

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \sim

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-50i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Address Space

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU has a separate, 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement up to 2 Kbytes of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:	The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and								
	pinout diagrams for device-specific information.								

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field or by using Indirect Addressing mode using a Working register as an Address Pointer.

	sp
	PI
	C3
	3F
	0L
	6G
	ľŠ,
	101
	X
	02
	ar
	bl
	ds
	PI
	C
	3F
	J1(
	6G
	SX
	20
	X
	04

TABLE 4-18: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	—	—	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426									PDC1<15:0	>							0000
PHASE1	0428								Р	HASE1<15	:0>							0000
DTR1	042A	—	DTR1<13:0>									0000						
ALTDTR1	042C	—	—							AL	.TDTR1<13:	0>						0000
SDC1	042E									SDC1<15:0	>							0000
SPHASE1	0430								SF	PHASE1<15	5:0>							0000
TRIG1	0432						-	TRGCMP<	15:3>						_	—	—	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	_	—	—	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436						S	STRGCMP	<15:3>							_	_	0000
PWMCAP1	0438		PWMCAP1<15:3> 000									0000						
LEBCON1	043A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0	_	—	_	0000
Legend:	x = U	nknown va	lue on Res	et, — = unir	nplemente	d, read as '0'	Reset valu	ues are sho	wn in hexa	adecimal.			•	•		•		

TABLE 4-19: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP FOR dsPIC33FJ06GS102/202 AND dsPIC33FJ16GSX02/X04 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0				CAM	XPRES	IUE	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0446									PDC2<15:0	>							0000
PHASE2	0448								P	HASE2<15	:0>							0000
DTR2	044A	_	_								DTR2<13:0>							0000
ALTDTR2	044C	_	_							AL	.TDTR2<13:()>						0000
SDC2	044E									SDC2<15:0	>							0000
SPHASE2	0450								SI	PHASE2<15	5:0>							0000
TRIG2	0452							TRGCMP<	:15:3>						_	_	_	0000
TRGCON2	0454	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0456						S	STRGCMP	<15:3>						_	_	_	0000
PWMCAP2	0458						F	PWMCAP2	<15:3>						_	_	_	0000
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	—	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	_		PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			_	_	_	_	_	_	_	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50	IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40	0000
ADCPC3	0310								TRGSRC60	0000								
ADCBUF0	0320								ADC Da	ata Buffer	0							xxxx
ADCBUF1	0322								ADC Da	ata Buffer	1							xxxx
ADCBUF2	0324								ADC Da	ata Buffer	2							xxxx
ADCBUF3	0326								ADC Da	ata Buffer	3							xxxx
ADCBUF4	0328								ADC Da	ata Buffer	4							xxxx
ADCBUF5	032A								ADC Da	ata Buffer	5							xxxx
ADCBUF6	032C								ADC Da	ata Buffer	6							xxxx
ADCBUF7	032E								ADC Da	ata Buffer	7							xxxx
ADCBUF8	0330								ADC Da	ata Buffer	8							xxxx
ADCBUF9	0332								ADC Da	ata Buffer	9							xxxx
ADCBUF10	0334	ADC Data Buffer 10								xxxx								
ADCBUF11	0336	ADC Data Buffer 11 2								xxxx								
ADCBUF12	0338								ADC Da	ta Buffer	12							xxxx
ADCBUF13	033A		ADC Data Buffer 13 xxxx									xxxx						

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: PMD REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770		—		T2MD	T1MD	—	PWMMD	—	I2C1MD	-	U1MD		SPI1MD	—		ADCMD	0000
PMD2	0772	—	_	_	_	_	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774	—	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	—	0000
PMD4	0776	—	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	—	0000
PMD6	077A	—	_	_	_	_	_	PWM2MD	PWM1MD	_	_	_	_	_	_	_	—	0000
PMD7	077C	_	_	_	_	_	-	CMP2MD	CMP1MD	-	_		_	_		_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PMD REGISTER MAP FOR dsPIC33FJ16GS402 AND dsPIC33FJ16GS404 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	T3MD	T2MD	T1MD	—	PWMMD	_	I2C1MD	_	U1MD		SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_		OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD		_	_	0000
PMD6	077A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_		_	_	0000
PMD7	077C	_	—	_	—	_	_	—	—	—	—	—	_	_	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PMD REGISTER MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	—	T3MD	T2MD	T1MD	—	PWMMD	—	I2C1MD	_	U1MD	-	SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_	_		_	_		OC2MD	OC1MD	0000
PMD3	0774	_		—		_	CMPMD	—	—	—	-	_		_		_	_	0000
PMD4	0776			_			—	_	—	—		_		REFOMD	_	—		0000
PMD6	077A			_		PWM4MD	PWM3MD	PWM2MD	PWM1MD	—		_		_	-	—		0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	—	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-48: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions to provide a greater addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA. How-
	ever, the 4-bit Wb (register offset) field is
	shared by both source and destination
	(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts (Part IV)" (DS70300) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement up to 35 unique interrupts and 4 non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices clear their registers in response to a Reset, which forces the PC to zero. The Digital Signal Controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

	-	-		-			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	IC2IP2	IC2IP1	IC2IP0	—	—	—	—
bit 7							bit 0
Logondy							
R – Readabl	le hit	W – Writable	bit	II – I Inimple	mented bit read	1 as '0'	
		'1' - Bit is set		0 – Onimple	eared	v – Bitisunki	
		1 – Dit 13 361		0 – Dit 13 Ci	eared		Iowii
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	Fimer2 Interrupt	Priority bits				
	111 = Interru	upt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	pt source is dis	sabled				
bit 11	Unimplemer	n ted: Read as '	0'				
bit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	2 Interrupt Prio	rity bits		
	111 = Interru	upt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	upt source is dis	sabled				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-4	IC2IP<2:0>:	Input Capture (Channel 2 Inte	errupt Priority I	bits		
	111 = Interru	upt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	ipt source is dis	sabled				
DIT 3-0	Unimplemen	nted: Read as '	0.				

REGISTER 7-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2) (CONTINUED)

- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
 - 2: This register is reset only on a Power-on Reset (POR).
 - 3: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL					
bit 15			•				bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC					
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15 bit 14	PENH: PWM 1 = PWM mo 0 = GPIO mo PENL: PWM	/IH Output Pin dule controls th dule controls th /IL Output Pin (dule controls th	Ownership bit ne PWMxH pin ne PWMxH pin Ownership bit ne PWMxL pin									
	0 = GPIO mo	dule controls th	ne PWMxL pin									
bit 13	POLH: PWN	POLH: PWMH Output Pin Polarity bit										
	1 = PWMxH p 0 = PWMxH p	oin is active-lov oin is active-hig	v Ih									
bit 12	POLL: PWML Output Pin Polarity bit											
	1 = PWMxL pin is active-low 0 = PWMxL pin is active-high											
bit 11-10	PMOD<1:0>:	PWM # I/O F	in Mode bits ⁽¹)								
	11 = PWM I/C 10 = PWM I/C 01 = PWM I/C 00 = PWM I/C	D pin pair is in t D pin pair is in t D pin pair is in t D pin pair is in t	the True Indep the Push-Pull (the Redundant the Compleme	endent Outpu Output mode : Output mode ntary Output i	t mode e mode							
bit 9	OVRENH: (Override Enabl	e for PWMxH	Pin bit								
	1 = OVRDAT 0 = PWM ger	<1> provides d	ata for output o s data for the F	on the PWMx PWMxH pin	H pin							
bit 8	OVRENL: C	verride Enable	for PWMxL P	in bit								
	1 = OVRDAT 0 = PWM ger	<0> provides d nerator provides	ata for output of s data for the F	on the PWMxl PWMxL pin	L pin							
bit 7-6	OVRDAT<1:0	D>: Data for P	WMxH and PV	VMxL Pins if (Override is Enat	oled bits						
	If OVERENH	= 1, then OVR = 1, then OVR	DAT<1> provid DAT<0> provid	des data for P les data for P	WMxH WMxL							
bit 5-4	FLTDAT<1:0	>: State for P	WMxH and PW	/MxL Pins if F	LTMOD is Enat	oled bits ⁽²⁾						
	FCLCONx <if If Fault is acti If Fault is acti</if 	<u>LTMOD> = 0:</u> ve, then FLTD/ ve, then FLTD/	Normal Fault r AT<1> provide: AT<0> provide:	<u>node:</u> s the state for s the state for	PWMxH PWMxL							
	FCLCONx <if If current-limit If Fault is acti</if 	<u>LTMOD> = 1:</u> t is active, then ve, then FLTD	Independent F FLTDAT<1> p AT<0> provide	ault mode: provides data t s the state for	for PWMxH PWMxL							
Note 1: The	ese bits should	be changed on	ly when PTEN	l = 0. Changir	ig the clock sele	ection during op	eration will					

REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER

yield unpredictable results.

2: The state represents the active/inactive state of the PWM module depending on the POLH and POLL bit settings.

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	—	FORM ⁽¹⁾
bit 15							
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾		ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bi	it	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: Analo	og-to-Digital Ope	erating Mode bit				
	1 = Analog-to	o-Digital Convert	er (ADC) module	is operating			
		iverter is oπ	,				
DIC 14		nteo: Read as U	ada hit				
DIL 13	1 - Discontin		oue bit	o ontore Idlo i	modo		
	1 = Discontinue 0 = Continue	s module operat	tion in Idle mode		noue		
bit 12	SLOWCLK:	Enable The Slov	v Clock Divider bit	(1)			
	1 = ADC is c	clocked by the a	uxiliary PLL (ACL)	<)			
	0 = ADC is c	clock by the prim	ary PLL (Fvco)				
bit 11	Unimplemer	nted: Read as '0	,				
bit 10	GSWTRG: G	Blobal Software	Frigger bit				
	When this bi	t is set by the us	ser, it will trigger o	onversions if	selected by the	e TRGSRC<4:(0> bits in the
	ADCPCx reg	isters. This bit m	iust be cleared by	the user prior	to initiating and	other global trig	ger (i.e., this
hit Q	Unimplement	oted: Read as 'n	,				
bit 8	FORM: Data	Output Format I					
DIT O	1 = Fractiona	al (Dout = dddd	1 dddd dd00 00	00)			
	0 = Integer ([DOUT = 0000 00	Odd dddd dddd)				
bit 7	EIE: Early Int	terrupt Enable b	it(1)				
	1 = Interrupt	is generated after	er first conversion	is completed			
	0 = Interrupt	is generated after	er second convers	ion is comple	ted		
bit 6	ORDER: Cor	nversion Order b	_{bit} (1,2)				
	1 = Odd num	bered analog in	put is converted fi	rst, followed b	y conversion of	f even numbere	ed input
hit E		Sequential Semi	alo Epoblo hit(1,2)	list, iolioweu i	by conversion o		eu input
DILO	1 - Shared	Sequential Samp		is sampled a	at the start of	the second (conversion if
	ORDER	= 0. If ORDER =	= 1, then the share	ed S&H is san	npled at the sta	art of the first co	onversion.
	0 = Shared S	S&H is sampled	at the same time	the dedicated	S&H is sampl	ed if the share	d S&H is not
	currently	busy with an e	existing conversion	n process. If	the shared S&	&H is busy at	the time the
	ueaicate	u sample	a, men me snarec	I SAM WIII SAM	iple at the start		reision cycle.
Note 1: T	hese control b	its can only be c	hanged while AD	C is disabled ((ADON = 0).		

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER

2: These bits are only available on devices with one SAR.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN5: Interrupt Request Enable 5 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed 0 = IRQ is not generated
bit 14	PEND5: Pending Conversion Status 5 bit
	 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG5: Software Trigger 5 bit
	 1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND5 bit is set. 0 = Conversion has not started

- **Note 1:** This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHA	RACTER	ISTICS	Standard (unless Operatin	d Opera otherwi g tempe	ting Co se state erature	ndition: ed) -40°C	s: 3.0V to 3.6V ≤ TA ≤ +85°C for Industrial
Param	Symbol	Characteristic	-40°C Min Typ Max Units			-40°C:	≤ TA ≤ +125°C for Extended
r arann.	Cymbol	Output Low Voltage		Typ.	max.	Units	
		I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5-RB10, RB15, RC1, RC2, RC9, RC10	_	_	0.4	V	IOL ≤ 6 mA, VDD = 3.3V See Note 1
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins – RC0, RC3-RC8, RC11-RC13	_	_	0.4	V	Io∟ ≤ 10 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	Io∟ ≤ 18 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	2.4	_		V	Іон ≥ -6 mA, Voo = 3.3V See Note 1
DO20	Vон	Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.4	_	_	V	Іон ≥ -10 mA, Voo = 3.3V See Note 1
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	ІОн ≥ -18 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		$\begin{array}{l} \text{IOH} \geq \text{-12 mA, VDD} = 3.3\text{V} \\ \text{See Note 1} \end{array}$
		4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5 BB10 BB15 BC1 BC2	2.0	_	_	V	ІОн ≥ -11 mA, VDD = 3.3V See Note 1
		RC9, RC10	3.0	_	_		$OH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1
		Output High Voltage 8x Source Driver Pins – RC0,	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1
DO20A	VOH1	RC3-RC8, RC11-RC13	2.0	—	—	V	IOH ≥ -12 mA, VDD = 3.3V See Note 1
			3.0	_	_		$IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1
		Output High Voltage I/O Pins:	1.5				IOH ≥ -30 mA, VDD = 3.3V See Note 1
		16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.0			V	$\begin{array}{l} \text{IOH} \geq \text{-25 mA, VDD} = 3.3\text{V} \\ \text{See Note 1} \end{array}$
			3.0	_	_		$IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1

TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

TABLE 25-6: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	DC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max		Units	Conditions			
		Program Flash Memory							
HD130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +150°C ⁽²⁾		
HD134	Tretd	Characteristic Retention	20	_		Year	1000 E/W cycles or less and no other specifications are violated		

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above +125°C.

TABLE 26-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		Standard O (unless oth Operating te	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No. Typical Max			Units	Units Conditions				
Idle Current (II	DLE): Core Of	f, Clock On	Base Current	(1)				
MDC45d	64	105	mA	-40°C				
MDC45a	64	105	mA	+25°C	3.3V	50 MIPS		
MDC45b	64	105	mA	+85°C				

Note 1: Base Idle current (IIDLE) is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Microchip Technology Drawing C04-103C Sheet 1 of 2

Revision E (December 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 16-Kbyte Flash and up to 2-Kbyte SRAM) with High-Speed PWM, ADC and Comparators"	Changed CN6 to CN5 on pin 16 of dsPIC33FJ16GS502 28-pin SPDIP, SOIC pin diagram.
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Removed the 10 Ohm resistor from Figure 2-1.
Section 4.0 "Memory Organization"	Renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from '0000' to '2300' for the ACLKCON SFR (see 4-41).
Section 8.0 "Oscillator Configuration"	Updated the default reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 8-5). Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 8-6).
Section 9.0 "Power-Saving Features"	Updated the last paragraph of Section 9.2.2 " Idle Mode " to clarify when instruction execution begins. Added Note 1 to the PMD1 register (see Register 9-1).
Section 10.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 10.2 "Open-Drain Configuration" .
Section 15.0 "High-Speed PWM"	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 15-5). Updated the smallest pulse width value from 0x0008 to 0x0009 and the maximum pulse width value from 0x0FFEF to 0x0008 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 15-7).
	and Register 15-8).
	Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 15-14).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.