

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4	-20:	HIGH	I-SPEE	D PWM	GENEF	RATOR 3	B REGIS	TER M	AP FO	R dsPIC	33FJ16	GSX02/X	(04 DEVI	CES ON	LY			
File Name	SFR Addr	Bit 15	5 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets															
PWMCON3	0460	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	—	_	CAM	XPRES	IUE	0000
IOCON3	0462	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0464	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0466									PDC3<15:0;	>							0000
PHASE3	0468								Р	HASE3<15:)>							0000
DTR3	046C	—	—							[) DTR3<13:0>							0000
ALTDTR3	046C	—	—							AL	TDTR3<13:0)>						0000
SDC3	046E									SDC3<15:0:	>							0000
SPHASE3	0470								SF	PHASE3<15	:0>							0000
TRIG3	0472							TRGCMP<	:15:3>						—	_	—	0000
TRGCON3	0474	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG3	0476						5	STRGCMP	<15:3>						—	_	—	0000
PWMCAP3	0478		PWMCAP3<15:3> 0000															
LEBCON3	047A	PHR	PHF PLR PLF FLTLEBEN CLLEBEN LEB6 LEB5 LEB4 LEB3 LEB2 LEB0 — — — 0000															
Legend:	x = u	nknown valu	ue on Reset	;, — = unimp	lemented, I	read as '0'. R	eset values	are shown	in hexadec	imal.								

TABLE 4-21: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ16GS50X DEVICES ONLY

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0480	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_		—	CAM	XPRES	IUE	0000
IOCON4	0482	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON4	0484	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC4	0486									PDC4<15:0	>							0000
PHASE4	0488								F	HASE4<15:	0>							0000
DTR4	048A	—								[DTR4<13:0>							0000
ALTDTR4	048A	—								AL	TDTR4<13:0)>						0000
SDC4	048E									SDC4<15:0	>							0000
SPHASE4	0490								S	PHASE4<15	:0>							0000
TRIG4	0492							TRGCMP<	15:3>						_	_	_	0000
TRGCON4	0494	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	—	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG4	0496						S	STRGCMP	<15:3>						_	_	_	0000
PWMCAP4	0498						F	PWMCAP4	<15:3>						—	_	_	0000
LEBCON4	049A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0	_			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29:	HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY
--------------------	--

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	-	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	—	_	_	_	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	P3RDY P2RDY P1RDY										P0RDY	0000				
ADBASE	0308		ADBASE<15:1> — 000											0000				
ADCPC0	030A	IRQEN1	RQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00										0000					
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC3	0310	_	IRQEN6 PEND6 SWTRG6 TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRG									TRGSRC60	0000					
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF4	0328								ADC D	ata Buffer	4							xxxx
ADCBUF5	032A								ADC D	ata Buffer	5							xxxx
ADCBUF6	032C								ADC D	ata Buffer	6							xxxx
ADCBUF7	032E		ADC Data Buffer 7 xxxx											xxxx				
ADCBUF12	0338		ADC Data Buffer 12 xxxx															
ADCBUF13	033A								ADC Da	ata Buffer	13							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 24.0 "Electrical Characteristics"** for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.2.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the

VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The Power-up Timer Delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the FPOR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 21.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

FIGURE 6-3: BROWN-OUT SITUATIONS

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IE	PWM1IE	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15	PWM2IE: PW	/M2 Interrupt E	nable bit					
	1 = Interrupt	request is enab	led					
	0 = Interrupt	request is not e	nabled					
bit 14	PWM1IE: PW	/M1 Interrupt E	nable bit					
	1 = Interrupt	request is enab	led					
	0 = Interrupt	request is not e	nabled					
bit 13-0	Unimplemen	ted: Read as '	כ'					

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions
- The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active

The device will wake-up from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

10.6.2.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-15 through Register 10-31). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF **REMAPPABLE OUTPUT** FOR RPn RPORn<5:0> Default 0 U1TX Output Enable 3 U1RTS Output Enable 4 **Output Enable** • • . **OC2 Output Enable** 19 PWM4L Output Enable 45 Default 0 U1TX Output 3 U1RTS Output 4 RPn Output Data • \mathbf{X} • . OC2 Output 19

45

PWM4L Output

TABLE 10-2:	OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPORn<5:0>	Output Name
NULL	000000	RPn tied to default port pin
U1TX	000011	RPn tied to UART1 transmit
U1RTS	000100	RPn tied to UART1 Ready-to-Send
SDO1	000111	RPn tied to SPI1 data output
SCK1	001000	RPn tied to SPI1 clock output
SS1	001001	RPn tied to SPI1 slave select output
OC1	010010	RPn tied to Output Compare 1
OC2	010011	RPn tied to Output Compare 2
SYNCO1	100101	RPn tied to external device synchronization signal via PWM master time base
REFCLKO	100110	REFCLK output signal
ACMP1	100111	RPn tied to Analog Comparator Output 1
ACMP2	101000	RPn tied to Analog Comparator Output 2
ACMP3	101001	RPn tied to Analog Comparator Output 3
ACMP4	101010	RPn tied to Analog Comparator Output 4
PWM4H	101100	RPn tied to PWM output pins associated with PWM Generator 4
PWM4L	101101	RPn tied to PWM output pins associated with PWM Generator 4

© 2008-2014 Microchip Technology Inc.

REGISTER 15-9:	PHASEX: PWMX PRIMARY PHASE-SHIFT REGISTER ^(1,2)	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWM Phase-Shift Value or Independent Time Base Period for this PWM Generator bits

- **Note 1:** If PWMCONx<ITB> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Independent Time Base period value for PWMxL only
 - The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
LEB4	LEB3	LEB2	LEB1	LEB0		—	—
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PHR: PWMx	H Rising Edge	Trigger Enabl	le bit			
	1 = Rising eq	dge of PWMxH	will trigger the	e LEB counter			
bit 11		Lelling Edge T	ige of Paviat				
DIL 14			ngger Enable	e LER countor			
	1 = Faining e 0 = LEB igno	ores the falling e	edge of PWM	xH			
bit 13	PLR: PWML	Rising Edge Ti	igger Enable	bit			
	1 = Rising ed	dge of PWMxL	will trigger the	LEB counter			
	0 = LEB igno	pres the rising e	dge of PWMx	٢L			
bit 12	PLF: PWML	Falling Edge T	rigger Enable	bit			
	1 = Falling e	dge of PWMxL	will trigger the	e LEB counter			
	0 = LEB igno	bres the falling e	edge of PWM	xL			
bit 11	FLTLEBEN:	Fault Input LEE	B Enable bit				
	1 = Leading-	Edge Blanking	is applied to s	selected Fault in	nput ult input		
bit 10		Current-Limit LF	B Enable bit		an input		
bit To	1 = Leading	Edge Blanking	is applied to s	selected current	limit input		
	0 = Leading-	Edge Blanking	is not applied	to selected cur	rent-limit input		
bit 9-3	LEB<6:0>: L	_eading-Edge B	lanking for Cu	urrent-Limit and	Fault Inputs bit	S	
	The value is	8.32 nsec incre	ments.				
bit 2-0	Unimpleme	nted: Read as '	0'				
Note 1:	Configure this reg	ister in word fo	rmat.				

REGISTER 15-18: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER⁽¹⁾

DAMA		D 4 4 4 0	D AA (4 1 1 0	DAMA	D 444 0	D 444 o	DAM 0
R/W-0	0-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		12CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		U = Unimple	mented bit, re	ad as '0'			
R = Readable			e dit	HC = Hardwa	re Clearable bit		
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unknown	own
bit 15	12CEN: 120	x Enable bit					
bit 10	1 = Enable	s the I2Cx m	odule, and cor	figures the SD	Ax and SCL x pin	is as serial port i	pins
	0 = Disable	es the I2Cx m	odule; all I ² C ⁺	[™] pins are con	trolled by port fun	ictions.	
bit 14	Unimplem	ented: Read	as '0'				
bit 13	I2CSIDL:	2Cx Stop in Ic	lle Mode bit				
	1 = Discon	tinues module	e operation wh	nen device ente	ers an Idle mode		
hit 12			Control bit (v	e moue	$a \leq l^2 C \leq a > a$		
DIC 12	1 – Releas		k	men operating	as i C slave)		
	0 = Holds 3	SCLx clock lo	w (clock streto	ch)			
	If STREN =	= 1:					
	Bit is R/W	(i.e., software	can write '0' t	o initiate stretc	h and write '1' to	release clock).	Hardware clear
		ig of slave trai	nsmission. Ha	irdware clear a	t end of slave rec	eption.	
	Bit is R/S	<u>- o.</u> (i.e., software	can only wri	te '1' to releas	e clock). Hardwa	are clear at beg	inning of slave
	transmissio	on.	,		,,		3
bit 11	IPMIEN: In	telligent Perip	heral Manage	ement Interface	e (IPMI) Enable b	it	
	1 = IPMI m	ode is enable	d; all address	es are Acknow	ledged		
hit 10	0 = 1F WI 11	Rit Slovo Add	tu rocc hit				
	$1 - 12C_{X}A[$	Dit Slave Auu	slave address				
	0 = I2CxAI	DD is a 7-bit s	lave address)			
bit 9	DISSLW: [Disable Slew F	Rate Control b	oit			
	1 = Slew ra	ate control is c	disabled				
	0 = Slew ra	ate control is e	enabled				
bit 8	SMEN: SM	Bus Input Lev	vels bit				
	1 = Enable 0 = Disable	es I/O pin three es SMBus inp	sholds complia ut thresholds	ant with SMBu	s specification		
bit 7	GCEN: Ge	neral Call Ena	able bit (when	operating as I	² C slave)		
	1 = Enable	es interrupt wh	nen a general	call address is	received in the I2	2CxRSR (modul	e is enabled for
	recept	ion) al call addres	e ie dieablod				
bit 6		ai call addres	s is uisabled atch Enable b	it (when onero	ting as 1^{2} C closes		
	Used in co	niunction with	the SCI REI	hit	ung as i C Slave)	1	
	1 = Enable	s software or	receive clock	stretching			
	0 = Disable	es software or	receive clock	stretching			

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70000321) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide high-speed, successive approximation Analog-to-Digital conversions to support applications, such as AC/DC and DC/DC power converters.

19.1 Features Overview

The ADC module comprises the following features:

- 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 12 external input channels
- Up to two internal analog inputs
- Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC power supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on Independent Time Bases (ITBs).

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- · Result alignment options
- Automated sampling
- External conversion start control
- Two internal inputs to monitor the INTREF internal reference and the EXTREF input signal

19.3 Module Functionality

The high-speed, 10-bit ADC module is designed to support power conversion applications when used with the high-speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 12 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and INTREF voltages, respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-6.

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

```
bit 4-0
               TRGSRC0<4:0>: Trigger 0 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN1 and AN0.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = \text{Reserved}
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

23.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

24.1 DC Characteristics

	Voo Bongo	Tomp Bongo	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04		
—	3.0-3.6V ⁽¹⁾	-40°C to +85°C	40		
—	3.0-3.6V ⁽¹⁾	-40°C to +125°C	40		

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			w
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θ.	IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-Pin QFN	θJA	28	—	°C/W	1
Package Thermal Resistance, 44-Pin TFQP	θJA	39	—	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	42	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	47	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	34	—	°C/W	1
Package Thermal Resistance, 18-Pin SOIC	θJA	57	—	°C/W	1
Package Thermal Resistance, 44-Pin VTLA	θJA	25	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

FIGURE 24-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronou no prescaler	s, Tcy + 20	—	—	ns	Must also meet Parameter TA15,
			Synchronou with prescale	s, (Tcy + 20)/N er	—	—	ns	N = Prescale value (1, 8, 64, 256)
			Asynchrono	us 20	—	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronou no prescaler	s, Tcy + 20	_	—	ns	Must also meet Parameter TA15,
			Synchronou with prescale	s, (Tcy + 20)/N er	_	—	ns	N = Prescale value (1, 8, 64, 256)
			Asynchrono	us 20	_	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronou no prescaler	s, 2 Tcy + 40	—	—	ns	
			Synchronou with prescal	s, Greater of: 40 ns or (2 Tcy + 40)/N	_	_		N = Prescale value (1, 8, 64, 256)
			Asynchrono	us 40	_	—	ns	
OS60	FT1	T1CK Oscillator Frequency Rangenabled by setti (T1CON<1>))	ge (oscillator ng bit, TCS	DC	_	50	kHz	
TA20	TCKEXTMRL	Delay from Exte Clock Edge to T	ernal T1CK ïmer Increme	0.75 TCY + 40	—	1.75 TCY + 40	—	

TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A timer.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	aram Symbol Characteristic ⁽¹⁾ Min Typ ⁽²⁾ M					Units	Conditions		
SP10	TscP	Maximum SCKx Frequency	—	—	15	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—		ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns			

TABLE 24-31: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 24-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max			Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Dimension Limits			MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	А	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2	3.65 3.70 4.70					
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	3.65 3.70 4.70					
Contact Width	b 0.23 0.38 0.4			0.43			
Contact Length	L	0.30 0.40 0.50					
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimensior	n Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	Α	0.40	0.50	0.60			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	(A3)	0.127 REF					
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2		4.00				
Overall Length	D	6.00 BSC					
Exposed Pad Length	ngth D2 4.00						
Terminal Width	b	0.35	0.40	0.45			
Corner Pad	b2	0.25	0.40	0.45			
Terminal Length	L	0.55	0.60	0.65			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209B Sheet 2 of 2