

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

dsPIC	C33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 Product Families	2
1.0	Device Overview	17
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	21
3.0	CPU	
4.0	Memory Organization	43
5.0	Flash Program Memory	83
6.0	Resets	89
7.0	Interrupt Controller	97
8.0	Oscillator Configuration	. 135
9.0	Power-Saving Features	. 147
10.0	I/O Ports	. 155
11.0	Timer1	. 183
12.0	Timer2/3 Features	. 185
13.0	Input Capture	. 191
14.0	Output Compare	. 193
15.0	High-Speed PWM	
16.0		
17.0	Inter-Integrated Circuit (I ² C [™])	
18.0	Universal Asynchronous Receiver Transmitter (UART)	. 233
19.0	High-Speed 10-bit Analog-to-Digital Converter (ADC)	. 239
20.0	High-Speed Analog Comparator	
21.0	Special Features	. 267
22.0	Instruction Set Summary	. 275
23.0	Development Support	
24.0	Electrical Characteristics	
25.0	High-Temperature Electrical Characteristics	
26.0	50 MIPS Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
28.0	Packaging Information	. 351
	/icrochip Web Site	
Custo	omer Change Notification Service	. 393
Custo	omer Support	. 393
Produ	uct Identification System	. 395

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	—	_	_	—	_	—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	—	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	_	_	PSEMIF	—	_	_	—	_	—	_	_	_	0000
IFS4	008C		_	—	_	_						_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	_	_	_		_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	-	_	AC4IF	AC3IF	AC2IF	_	—	—	_	_	PWM4IF	PWM3IF	0000
IFS7	0092	_	-	_	_	-	_	—	—	_	_	—	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	-	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	_	-	INT2IE	_	-	_	—	—	_	_	—	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	-	—	_	-	_	PSEMIE	_	_	_	—	—	_	_		-	0000
IEC4	009C	_	-	_	_	-	_	—	—	_	_	—	—	_	_	U1EIE	-	0000
IEC5	009E	PWM2IE	PWM1IE	—	_	_	_	—	—	—	_	—	—	_	_	-	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	_	_	_	_	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_	_	_	_	_	_	_	_	_	_	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	—	_	-	_	—	—		ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	—	_	-	_	—	—	_	_	—	—	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	-	_	_	-	_	—	_	_	INT2IP2	INT2IP1	INT2IP0	_	_		-	0040
IPC14	00C0	_	-	_	_	-	_	—	_	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_		-	0040
IPC16	00C4	_	-	_	_	-	_	—	_	_	U1EIP2	U1EIP1	U1EIP0	_	_		-	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400
IPC24	00D4	_	—	—	—	—	—	_	_	_	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0	0044
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0	_	_	_	_	_	_	_	_	_	_	—	—	4000
IPC26	00D8	_	_	—	_	_	_	_	_	_	AC4IP2	AC4IP1	AC4IP0	_	AC3IP2	AC3IP1	AC3IP0	0440
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	_	_	_	_	_	_	_	4400
IPC28	00DC	_	ADCP5IP2	ADCP5IP1	ADCP5IP0	_	ADCP4IP2	ADCP4IP1	ADCP4IP0	_	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	4444
IPC29	00DE	_	_	_	_	_		_	_	_	_	_	—	_	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG		_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	

TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

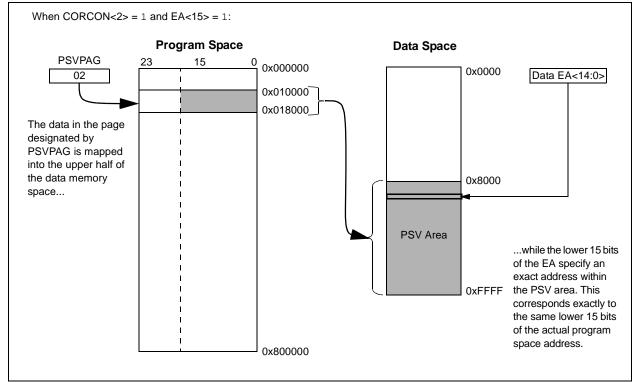
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility (PSV) is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

6.1 System Reset

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source. A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	_	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd(1)	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd(1)	Tost ⁽²⁾	ТLOCК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	TLOCK ⁽³⁾
LPRC	Toscd ⁽¹⁾	_	—	Toscd ⁽¹⁾

TABLE 6-1:OSCILLATOR DELAY

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER	14
---	----

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	PSEMIP2	PSEMIP1	PSEMIP0	—	—	—	—
bit 7							bit 0

	l	-	
e 0	ena		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-7 bit 6-4	Unimplemented: Read as '0' PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)
	• 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

Unimplemented: Read as '0' bit 3-0

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15					•		bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	U1EIP2	U1EIP1	U1EIP0	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-7	Unimplemented: Read as '0'	

bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

	• = • • • • • • • • • • • • • • • • • •						
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	IC2MD	IC1MD
it 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—		_		OC2MD	OC1MD
oit 7	·						bit C
_egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-10 bit 9 bit 8	IC2MD : Input 1 = Input Cap 0 = Input Cap IC1MD : Input 1 = Input Cap	ture 2 module ture 2 module Capture 1 Moo ture 1 module	dule Disable bit is disabled is enabled dule Disable bit is disabled				
bit 7-2	0 = Input Capture 1 module is enabled Unimplemented: Read as '0'						
bit 1	OC2MD : Output Compare 2 Module Disable bit 1 = Output Compare 2 module is disabled 0 = Output Compare 2 module is enabled						
bit 0	1 = Output Co	out Compare 1 ompare 1 modu ompare 1 modu		e bit			

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

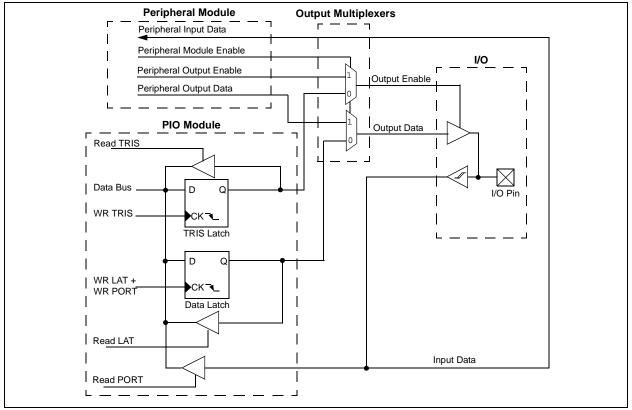
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2008-2014 Microchip Technology Inc.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	כ'				
	100010 = Inp 100001 = Inp	t tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 t tied to RP32	3				
bit 7-6	Unimplemen	ted: Read as '	י'				
bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	•	; ; ;	FLT4) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- Optionally, the external clock input (T1CK) can be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

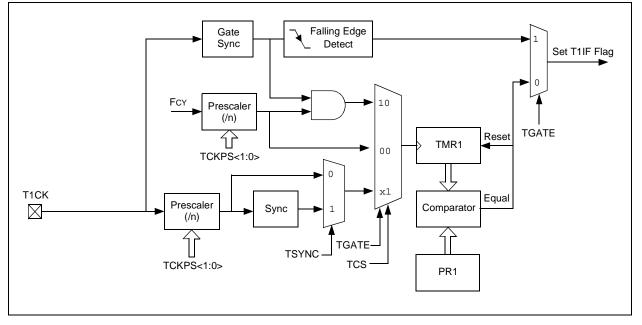
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1: TIN	ER MODE SETTINGS
-----------------	------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	_	TSIDL	_	—	_	—	_				
bit 15							bit				
				D 0.44 a							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
— L:1 7	TGATE	TCKPS1	TCKPS0	T32	_	TCS					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkne	own				
bit 15	TON: Timerx										
		1 (in 32-Bit Tim bit TMRx:TMR									
		bit TMRx:TMR	• •								
		0 (in 16-Bit Tim									
	1 = Starts 16-										
	0 = Stops 16-										
bit 14	-	ted: Read as '									
bit 13		TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues timer operation when device enters Idle mode									
		ues timer operations timer operations timer operations to the second second second second second second second s			mode						
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit							
		$\frac{\text{When TCS} = 1}{\text{This bit is ignored.}}$									
	When TCS = 0:										
	 Gated time accumulation is enabled Gated time accumulation is disabled 										
				0.1							
bit 5-4		: Timerx Input	Clock Prescal	e Select bits							
	11 = 1:256 pr 10 = 1:64 pre										
		10 = 1:64 prescale value 01 = 1:8 prescale value									
	00 = 1:1 pres	cale value									
bit 3	T32: 32-Bit T	imerx Mode Se	elect bit								
		d TMRy form a d TMRy form a		oit timer							
bit 2	Unimplemen	ted: Read as '	0'								
bit 1	TCS: Timerx	Clock Source S	Select bit								
		clock from TxC lock (Fosc/2)	K pin								
		1001 (1 000/2)									

REGISTER 12-1: TxCON: TIMERx CONTROL REGISTER (x = 2)

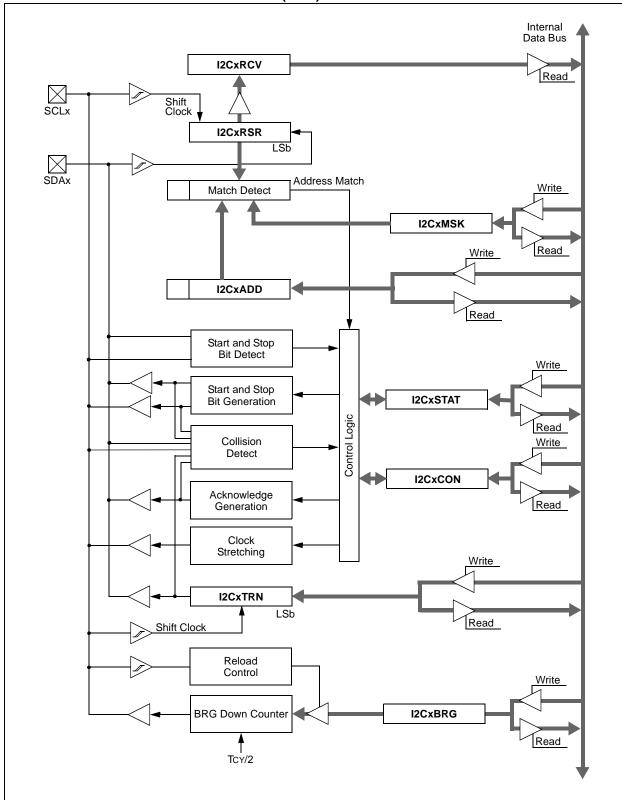
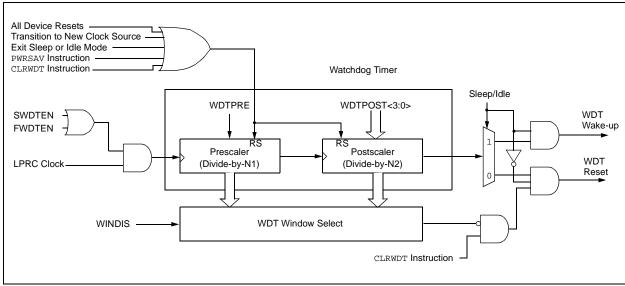


FIGURE 17-1: I2Cx BLOCK DIAGRAM (x = 1)

21.4 Watchdog Timer (WDT)

For the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.


21.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 21-2: WDT BLOCK DIAGRAM

21.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

21.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

21.8 Code Protection and CodeGuard[™] Security

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices offer the intermediate implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property (IP) in collaborative system designs.

When coupled with software encryption libraries, Code-Guard[™] Security can be used to securely update Flash even when multiple IPs reside on a single chip.

TABLE 21-3:CODE FLASH SECURITY
SEGMENT SIZES FOR
6-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 000FFEh
		002BFEh
	VS = 256 IW	000000h 0001FEh
	BS = 256 IW	000200h 0003FEh
BSS<2:0> = x10 256	GS = 1536 IW	000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 00015Eh
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh
768	GS = 1024 IW	000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x00 1792	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices.

Note:	Refer	to	"Co	odeGuar	Secur	ity"	
	(DS701	199)	for	further	infor	mation	on
	CodeGuard Security usage, configuration						
	and op	eratio	on.				

TABLE 21-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 5376 IW	0002200h 0003FEh 000400h 0007FEh 000800h 000FFEh 0006FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh 000200h
BSS<2:0> = x10	BS = 256 IW	0003FEh 000400h
256		0007FEh 000800h 000FFEh 001000h
	GS = 5120 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh 000800h
768		000800h 000FFEh 001000h
	GS = 4608 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x00	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h
	GS = 3584 IW	000FFEh 001000h 002BFEh

23.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

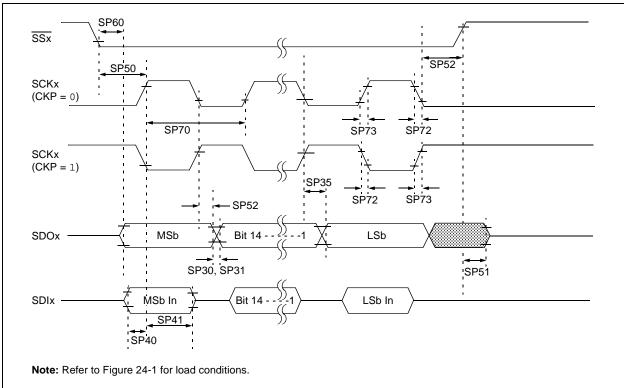
Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss, when VDD $\geq 3.0 V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when VDD < $3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 24-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


АС СНА		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	—	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

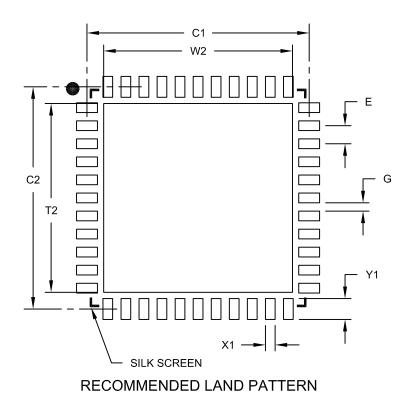
AC CHAR	AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					-	
Param No.	Symbol	Characteristic ⁽¹⁾ Min Typ Max		Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	—	35	ns	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2

TABLE 25-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25			ns		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25			ns		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2	
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge			55	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

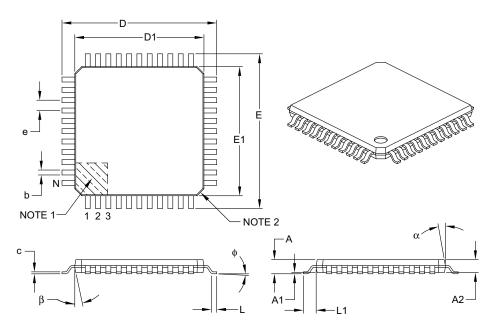
2: Assumes 50 pF load on all SPIx pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	А	_	—	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B