

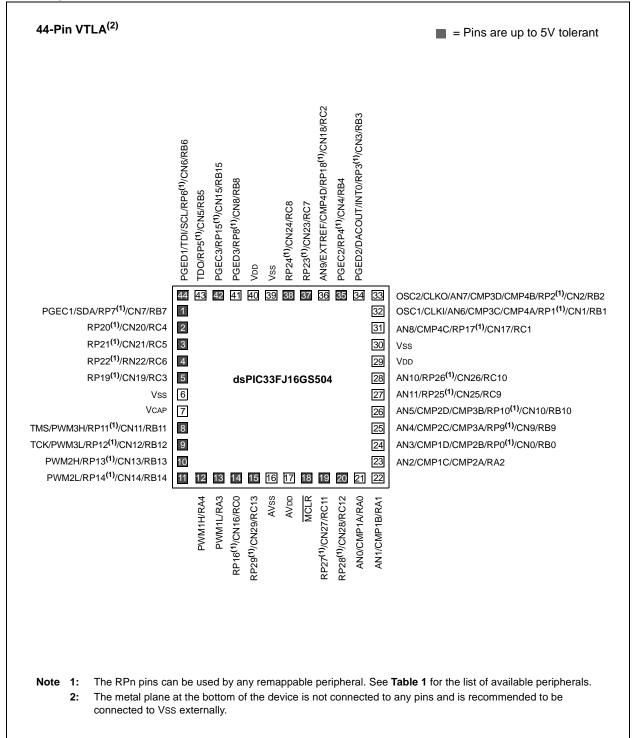
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-h-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FABLE 1-1: I Pin Name	Pin	I/O DESC Buffer	PPS	Description
	Туре	Туре	Capable	
CMP1A	I	Analog	No	Comparator 1 Channel A.
CMP1B	1	Analog	No	Comparator 1 Channel B.
CMP1C	1	Analog	No	Comparator 1 Channel C.
CMP1D	1	Analog	No	Comparator 1 Channel D.
CMP2A	1	Analog	No	Comparator 2 Channel A.
CMP2B	1	Analog	No	Comparator 2 Channel B.
CMP2C	1	Analog	No	Comparator 2 Channel C.
CMP2D	1	Analog	No	Comparator 2 Channel D.
CMP3A	i	Analog	No	Comparator 3 Channel A.
CMP3B	1	Analog	No	Comparator 3 Channel B.
CMP3C	1	Analog	No	Comparator 3 Channel C.
CMP3D	i	Analog	No	Comparator 3 Channel D.
CMP4A	i	Analog	No	Comparator 4 Channel A.
CMP4B	i	Analog	No	Comparator 4 Channel B.
CMP4C	i	Analog	No	Comparator 4 Channel C.
CMP4D	l i	Analog	No	Comparator 4 Channel D.
DACOUT	0	7 (10)	No	DAC output voltage.
ACMP1-ACMP4	0		Yes	DAC trigger to PWM module.
EXTREF	1		No	External voltage reference input for the reference DACs.
REFCLKO	0	Analog		
REFULKO	0		Yes	REFCLKO output signal is a postscaled derivative of the system clock.
FLT1-FLT8	I	ST	Yes	Fault Inputs to PWM module.
SYNCI1-SYNCI2	I	ST	Yes	External synchronization signal to PWM master time base.
SYNCO1	0		Yes	PWM master time base for external device synchronization.
PWM1L	0		No	PWM1 low output.
PWM1H	0		No	PWM1 high output.
PWM2L	0		No	PWM2 low output.
PWM2H	Ō		No	PWM2 high output.
PWM3L	0		No	PWM3 low output.
PWM3H	0		No	PWM3 high output.
PWM4L	0		Yes	PWM4 low output.
PWM4H	0	_	Yes	PWM4 high output.
PGED1	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 1.
PGEC1	1	ST	No	Clock input pin for programming/debugging Communication
		_	-	Channel 1.
PGED2	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 2.
PGEC2	., C	ST	No	Clock input pin for programming/debugging Communication
. 0101		01		Channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 3
PGEC3	1/0	ST	No	Clock input pin for programming/debugging Communication Channel 3.
TOLOG	· ·	01	NO	Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the
	UL.	51	NU	device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at
////DD		I		all times. AVDD is connected to VDD.
AVss	Р	Р	No	Ground reference for analog modules. AVss is connected to Vss.
VDD	P		No	Positive supply for peripheral logic and I/O pins.
VCAP	P		No	CPU logic filter capacitor connection.
Vss	P		No	Ground reference for logic and I/O pins.
	-	 compatible		
		gger input v		
	Fransistor			

.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

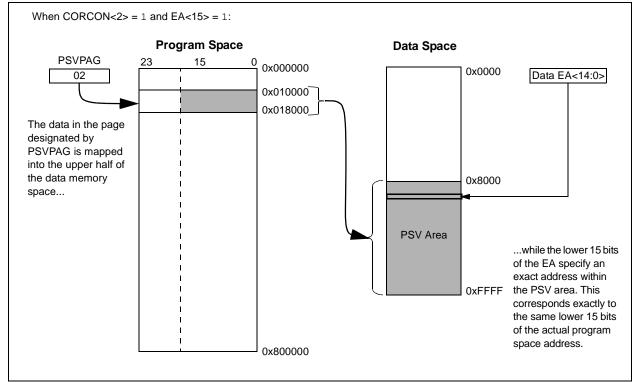
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility (PSV) is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

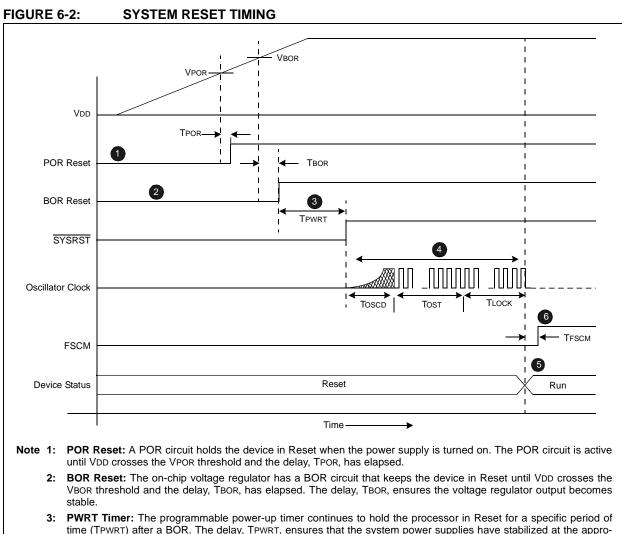
Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.


For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

- time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
- 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- 5: When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

Symbol	Parameter	Value
VPOR	POR Threshold	1.8V nominal
TPOR	POR Extension Time	30 µs maximum
VBOR	BOR Threshold	2.5V nominal
TBOR	BOR Extension Time	100 μs maximum
TPWRT	Programmable Power-up Time Delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

TABLE 6-2: OSCILLATOR DELAY

Note:	When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be
	within their operating ranges; otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes
	inactive, is long enough to get all operating parameters within specification.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF
bit 15							bit
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
AC2IF	_	_	_	_	_	PWM4IF	PWM3IF
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 15 bit 14	1 = Interrupt r 0 = Interrupt r ADCP0IF: AD 1 = Interrupt r	equest has oc equest has no	t occurred rersion Done Ir curred				
bit 13-10	•	ted: Read as '					
bit 9	1 = Interrupt r	g Comparator equest has oc equest has no		g Status bit			
bit 8	AC3IF: Analo	•	3 Interrupt Fla curred	g Status bit			
bit 7	1 = Interrupt r	g Comparator equest has oc equest has no		g Status bit			
bit 6-2	•	ted: Read as '					
bit 1	PWM4IF: PW 1 = Interrupt r	M4 Interrupt F equest has oc equest has no	lag Status bit curred				
bit 0		M3 Interrupt F equest has oc equest has no	curred				

REGISTER 7-10: IFS6: INTERRUPT FLAG STATUS REGISTER 6

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IE	PWM1IE	—	_	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—		_	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15	PWM2IE: PV	/M2 Interrupt Er	nable bit					
		request is enabl						
	0 = Interrupt	request is not ei	nabled					
bit 14	PWM1IE: PV	/M1 Interrupt Er	nable bit					
	•	request is enabl						
	0 = Interrupt	request is not ei	nabled					
bit 13-0	Unimplemen	ted: Read as '0)'					

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ROON	_	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	—		—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown			
bit 15	ROON: Refer	ence Oscillator	r Output Enab	ole bit						
				on the REFCL	.K0 pin ⁽²⁾					
		e oscillator outp		ł						
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit									
		e oscillator outp e oscillator outp								
bit 12		erence Oscillato								
	1 = Oscillator	crystal is used	as the refere	nce clock						
	•	lock is used as								
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾						
		ence clock divi	•							
		ence clock divi	•	4						
		ence clock divi ence clock divi								
		ence clock divi	-							
		ence clock divi	•							
		ence clock divi								
		ence clock divi	-							
	0111 = Refer	ence clock divi	ded by 128							
		ence clock divi	-							
		ence clock divi								
		ence clock divi								
		ence clock divi	-							
		ence clock divi ence clock divi	-							
	000T = Velet									
	0000 = Refer									

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

REGISTER 10-5: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—	_	—	—	—
bit 15						•	bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7	•					•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

OCFAR<5:0>: Assign Output Capture A (OCFA) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32

•

00000 = Input tied to RP0

REGISTER	10-7: RPINI	R20: PERIPHI	ERAL PIN S		I REGISTER	20	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15	- - SCK1R5 SCK1R4 SCK1R3 SCK1R2 SCK1R1 J-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 - - SDI1R5 SDI1R4 SDI1R3 SDI1R2 SDI1R1 nd: - W = Writable bit U = Unimplemented bit, read as '0'	bit					
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_			r	I I		1	SDI1R0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6	100010 = In 100001 = In 100000 = In • • • 00000 = Inp	put tied to RP34 put tied to RP33 put tied to RP32	4 3 2				
bit 5-0	SDI1R<5:0> 111111 = In 100011 = In 100010 = In 100001 = In	Assign SPI1 E pout tied to Vss pout tied to RP3 pout tied to RP3 pout tied to RP3 pout tied to RP3	Pata Input (SD 5 4 3	I1) to the Corre	esponding RPn	Pin bits	

REGISTER 10-7: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0
bit 15							bit 8
11.0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
U-0 — bit 7	0-0	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 7		T LIZI(1 21214	T ETZI(0	TLIZI	I LIZI(I	bit (
Legend:		\A/ \A/ \	1.14				
R = Readab		W = Writable			nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15-14	Unimplomon	ted: Read as '	0'				
	-						
bit 13-8		•	Fault Input 3 (FLI3) to the Co	orresponding R	Pn Pin bits	
	111111 = Inp	ut tied to Vss					
			_				
		ut tied to RP3					
	100010 = Inp	ut tied to RP34	1				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP34 ut tied to RP33 ut tied to RP32	4 3				
	100010 = Inp 100001 = Inp 100000 = Inp • • • 00000 = Inpu	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0	4 3 2				
bit 7-6	100010 = Inp 100001 = Inp 100000 = Inp • • • • 00000 = Inpu Unimplement	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '	4 3 2 0'				
bit 7-6 bit 5-0	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM	4 3 2 0'	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss	4 3 2 0' Fault Input 2 (FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP35	4 3 2 0' Fault Input 2 (5	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	orresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to RP34 ut tied to RP32 ut tied to RP32 ut tied to RP32	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-10: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	—	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0
r							
Legend:		HC = Hardware			re Settable bit		
R = Readable		W = Writable bi	t		nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		M Module Enabl nodule is enable					
		nodule is disable					
bit 14		ented: Read as					
bit 13	-	WM Time Base S		e bit			
		me base halts in me base runs in					
bit 12	SESTAT: S	pecial Event Inte	errupt Status bit				
	•	event interrupt i event interrupt i					
bit 11	SEIEN: Spe	ecial Event Interr	upt Enable bit				
		event interrupt i event interrupt i					
bit 10		ole Immediate Pe	•				
		Period register is Period register u			oundaries		
bit 9	1 = SYNCI	: Synchronization x and SYNCO po x and SYNCO ar	plarity is inverted	•			
bit 8	SYNCOEN	: Primary Time E	Base Sync Enab	le bit ⁽¹⁾			
		D output is enabl D output is disabl					
bit 7	SYNCEN:	External Time Ba	ase Synchroniza	tion Enable bit	t(1)		
		al synchronization al synchronization					
bit 6	Unimplem	ented: Read as	ʻ0'				
bit 5-4	SYNCSRC	<1:0>: Synchror	ous Source Sel	ection bits ⁽¹⁾			
	11 = Reser						
	10 = Reser 01 = SYNC						
	01 = STNC 00 = SYNC						
		uld be changed o st program the P					

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		TRGCMP<7:3>			_	_	_
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

When primary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.
bit 2-0
Unimplemented: Read as '0'

REGISTER 15-17: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGCM	/IP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0

10/00-0	10/00-0	10/00-0	11/00-0	10/00-0	0-0	0-0	0-0
	ST	FRGCMP<7:3>	_		—		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 STRGCMP<15:3>: Secondary Trigger Control Value bits When secondary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

REGISTER 1	8-1: UxMO	DE: UARTx N		STER				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0	
bit 15	·						bit	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7	EI BROR	//B/(OD	OTOXINV	BROM	TDOLLI	1 DOLLO	bit	
			0	•.				
Legend:	1.12	HC = Hardwa						
R = Readable		W = Writable		-	nented bit, read			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15	UARTEN: UA	ARTx Enable bi	_t (1)					
	1 = UARTx is	s enabled; all U	ARTx pins are	e controlled by	UARTx as defi	ned by UEN<1:	0>	
			UARTx pins a	are controlled I	by port latches	, UARTx power	consumptio	
bit 14	is minima	ai i ted: Read as 'i	ר'					
bit 13	-	Tx Stop in Idle I						
bit 13		ues module op		device enters	Idle mode			
		s module operation						
bit 12	IREN: IrDA [®]	Encoder and D	ecoder Enable	e bit ⁽²⁾				
	1 = IrDA enc	oder and deco	der are enable	ed				
	0 = IrDA encoder and decoder are disabled							
bit 11		le Selection for		it				
		in is in Simple» in is in Flow Co						
bit 10	Unimplemen	ted: Read as '	כ'					
bit 9-8		IARTx Enable b						
	10 = UxTX, L	JxRX, <u>UxCTS</u> a	ind UxRTS pir	ns are enabled	and used	controlled by po		
		nd UxRX pins a				/BCLK pins are		
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit			
		vill continue to s are on the follo			pt is generated	on falling edge,	bit is cleare	
		-up is enabled	wing naing eu	ge				
bit 6		RTx Loopback	Mode Select	bit				
		Loopback mod						
		k mode is disat						
bit 5	ABAUD: Auto	o-Baud Enable	bit					
	before ot	aud rate meas her data; cleare e measuremen	ed in hardwar	e upon comple	tion	eception of a Sy	nc field (55	
Note 1: Rei						anual" for inform	ation on	
	abling the UART				,			
2: Thi	s feature is only available for the 16x BRG mode (BRGH = 0).							

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

						D 444 a	5444.0
r-0	r-0	r-0	r-0	r-0	r-0	R/W-0	R/W-0
r	r	r	r r r C			CMRE	F<9:8>
bit 15	it 15						bit 8
	DAM 0	DAALO	D M A	D 444 0	DANIO	DANA	D 444 o
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMRE	F<7:0>			
bit 7							bit C
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-10	Reserved: Re	ead as '0'					
bit 9-0	CMREF<9:0>	Comparator I	Reference Vo	Itage Select bit	s		
		•		•	REF<9:0> * (AV	הה/2)/102 <i>1</i>) ער	lts depending
		•		, ,	XTREF/1024) if	, ,	
	•				XIIXEI / 1024) II		L
	•						
	•						
	0000000000	= 0.0 volts					
	,						

REGISTER 20-2: CMPDACx: COMPARATOR DAC x CONTROL REGISTER

21.8 Code Protection and CodeGuard[™] Security

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices offer the intermediate implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property (IP) in collaborative system designs.

When coupled with software encryption libraries, Code-Guard[™] Security can be used to securely update Flash even when multiple IPs reside on a single chip.

TABLE 21-3:CODE FLASH SECURITY
SEGMENT SIZES FOR
6-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 000FFEh
		002BFEh
	VS = 256 IW	000000h 0001FEh
	BS = 256 IW	000200h 0003FEh
BSS<2:0> = x10 256	GS = 1536 IW	000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 00015Eh
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh
768	GS = 1024 IW	000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x00 1792	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices.

Note:	Refer	to	"CodeGuard™			Secur	ity"
	(DS701	199)	for	further	infor	mation	on
	CodeG	iuard	Sec	urity usa	ge, co	onfigura	tion
	and op	eratio	on.				

TABLE 21-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 5376 IW	0002200h 0003FEh 000400h 0007FEh 000800h 000FFEh 0006FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh 000200h
BSS<2:0> = x10	BS = 256 IW	0003FEh 000400h
256		0007FEh 000800h 000FFEh 001000h
	GS = 5120 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh 000800h
768		000800h 000FFEh 001000h
	GS = 4608 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x00	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h
	GS = 3584 IW	000FFEh 001000h 002BFEh

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

23.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V-tolerant designated pins
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 24-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	—	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after	—	_	50	ns		

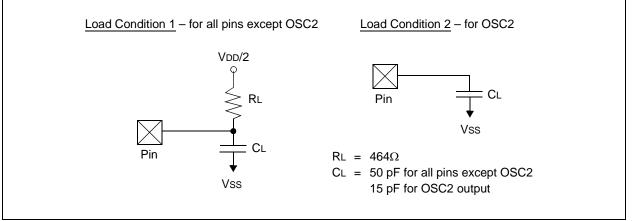
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

25.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in **Section 24.2** "AC Characteristics and Timing **Parameters**", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 24.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 25-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
AC CHARACTERISTICS	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature
	Operating voltage VDD range as described in Table 25-1.

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-8: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but are not tested in manufacturing.