

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	—	—	-	—	_	_	—	—	—	—	-	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF		T2IF		_		T1IF	OC1IF		INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_				—		_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	_	_	PSEMIF	_	_	_	—	_	_	_	_	_	0000
IFS4	008C	_	_	_	_	_	_	_	_	_	_	—	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IFS7	0092			—	—		—	_	_	—	—	—	_			_	ADCP2IF	0000
IEC0	0094			ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	_	T2IE	—	—	_	T1IE	OC1IE	_	INTOIE	0000
IEC1	0096			INT2IE	-		_	_	_		_	-	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC3	009A			-	-		-	PSEMIE	_		-	-	—			_		0000
IEC4	009C			-	-		-	_	_		-	-	—			U1EIE		0000
IEC5	009E	PWM2IE	PWM1IE	—	—	-	—	—	—	—	—	—	—	-	-	—	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	—	-	—	—	—	—	—	—	—	-	-	—	_	0000
IEC7	00A2	-	-	—	—	-	—	—	—	—	—	—	—	-	-	—	ADCP2IE	0000
IPC0	00A4	-	T1IP2	T1IP1	T1IP0	-	OC1IP2	OC1IP1	OC1IP0	—	—	—	—	-	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6	-	T2IP2	T2IP1	T2IP0	-	—	—	—	—	—	—	—	-	-	—	_	4000
IPC2	00A8	-	U1RXIP2	U1RXIP2	U1RXIP0	-	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	-	-	—	_	4440
IPC3	00AA			-	-		-	_	_	-	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0		-	_	_		MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE			—	_		—	_	_	_	—	_	—		INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2			—	_		—	_	_	_	INT2IP2	INT2IP1	INT2IP0			_		0040
IPC14	00C0			—	_		—	_	_	_	PSEMIP2	PSEMIP1	PSEMIP0			_		0040
IPC16	00C4			—	_		—	_	_	_	U1EIP2	U1EIP1	U1EIP0			_		0040
IPC23	00D2	—	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	—	—	—	—	—	—	—	—	4400
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	—	—	—	—	—	—	—	—	4400
IPC28	00DC	—	_	—	—	—	—	—	—	—	—	—	—	—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0004
INTTREG	00E0	_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

TABLE 4-11: TIMER REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	egister								0000
PR1	0102								Period Reg	gister 1								FFFF
T1CON	0104	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	egister								0000
PR2	010C								Period Reg	gister 2								FFFF
T2CON	0110	TON	—	TSIDL	—	—	_	_	_	—	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: TIMER REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 R	egister								0000
PR1	0102								Period Re	gister 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 R	egister								0000
TMR3HLD	0108						Timer3	Holding Re	gister (for 3	2-bit timer o	operations o	only)						xxxx
TMR3	010A								Timer3 R	egister								0000
PR2	010C								Period Re	gister 2								FFFF
PR3	010E								Period Re	gister 3								FFFF
T2CON	0110	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	—	TSIDL	—	_	—	_	—		TGATE	TCKPS1	TCKPS0		_	TCS		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140		Input Capture 1 Register									xxxx						
IC1CON	0142		-	ICSIDL		-	-		-	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address		MOV MOV MOV	#0x1100, W0 W0, XMODSRT #0x1163, W0	;set modulo start address
0x1100		MOV MOV	W0, MODEND #0x8001, W0	;set modulo end address
		MOV	W0, MODCON	;enable W1, X AGU for modulo
		MOV	#0x0000, W0	;W0 holds buffer fill value $% \left($
	♥ ()	MOV	#0x1110, W1	;point W1 to buffer
0x1163		DO MOV AGAIN:	AGAIN, #0x31 W0, [W1++] INC W0, W0	;fill the 50 buffer locations ;fill the next location ;increment the fill value
S E L	Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words			

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—			—	_	
bit 15	·					·	bit 8
L							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority b	its			
	111 = Interru	pt is Priority 7 (highest priorit	y)			
	•						
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is als	abled				
bit 3	Unimplemen	ted: Read as '	0′				
bit 2-0	PWM3IP<2:0	PWM3 Inter	rupt Priority b	its			
	111 = Interru	pt is Priority 7 (highest priorit	y)			
	•						
	•						
	•	nt in Driarity 1					
	001 = Interrup	puis Priority 1 nt source is dis	ahled				

REGISTER 7-29: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		_	_	_	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	ADCP1IP<2:	0>: ADC Pair 1	Conversion E	Done Interrupt	Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	ADCP0IP<2:	0>: ADC Pair 0) Conversion [Done Interrupt	Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimplemen	ted: Read as '0'		
bit 11-8	ILR<3:0>: Ne	ew CPU Interrupt Priority Le	evel bits	
	1111 = CPU	Interrupt Priority Level is 1	5	
	•			
	•			
	• 0001 – CPU	Interrunt Priority Level is 1		
	0000 = CPU	Interrupt Priority Level is 0		
bit 7	Unimplemen	ted: Read as '0'		
bit 6-0	VECNUM<6:	0>: Vector Number of Pend	ding Interrupt bits	
	0111111 = lr	nterrupt vector pending is N	lumber 135	
	•			
	•			
	•	terrunt vector pending is N	lumber 0	
	0000001 = Ir 0000000 = Ir	nterrupt vector pending is N	lumber 8	

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note:	At a devic	e Rese	et, the	PC	Cx reg	isters are
	initialized	such	that	all	user	interrupt
	sources a	re assi	gned	to P	riority	Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value 0xE0 with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of 7						
	or lower can be disabled. Trap sources						
	(level 8-level 15) cannot be disabled.						

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as '	o'					

REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

bit 13-8	RP7R<5:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP6R<5:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15				÷			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP9R<5:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP8R<5:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

'1' = Bit is set

n = Value at POR

x = Bit is unknown

				•	•		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15							bit 8
							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timerx	On bit					
	<u>When $132 = 1$</u> 1 - Starts 32	L (in 32-Bit Tim	<u>er mode):</u> v timer pair				
	0 = Stops 32-	bit TMRx:TMR	y timer pair				
	When T32 = 0) (in 16-Bit Tim	er mode):				
	1 = Starts 16-	bit timer					
	0 = Stops 16-	bit timer					
bit 14	Unimplemen	ted: Read as ')' • • • • •				
bit 13	TSIDL: Timer	x Stop in Idle N	lode bit				
	1 = Discontinues 0 = Continues	ues timer opera	ation when dev in in Idle mode	vice enters Idie	e mode		
bit 12-7		ted: Read as '	n' in falo moac	•			
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit			
	When TCS =	1:					
	This bit is igno	ored.					
	When TCS =	<u>0:</u>					
	1 = Gated tim	e accumulation	n is enabled				
hit 5-1		• Timery Input	Clock Prescal	a Salact hits			
511 5 4	11 = 1:256 pr	escale value	Clock Treseak				
	10 = 1:64 pre	scale value					
	01 = 1:8 pres	cale value					
	00 = 1:1 pres	cale value					
bit 3	132: 32-Bit 1	merx Mode Se	lect bit				
	$\perp = TMRx$ and $0 = TMRx$ and	d TMRy form a	separate 16-h	oit timer			
bit 2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timerx (Clock Source S	Select bit				
-	1 = External c	clock from TxCl	≺ pin				
	0 = Internal cl	ock (Fosc/2)					
bit 0	Unimplemen	ted: Read as '	כ'				

REGISTER 12-1: TxCON: TIMERx CONTROL REGISTER (x = 2)

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both primary and secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

DAM 0	11.0			D/M/ O	D/W/ O	D/M/ O	D/M/ O		
	0-0				R/VV-U		R/W-U		
IZCEN	—	12CSIDL	SCLREL	IPINIEN	A10M	DISSLW	SMEN		
DIT 15							DIT 8		
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit 0		
Legend: $U = Unimplemented bit, read as '0'$									
R = Readable	bit	VV = VVritable	e bit	HC = Hardwa	re Clearable bit				
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unknown	own		
bit 15	12CEN 120	x Enable bit							
	1 = Enable	s the I2Cx mo	odule, and cor	nfigures the SC	Ax and SCL x pin	s as serial port	oins		
	0 = Disable	es the I2Cx m	odule; all I ² C ⁺	[™] pins are con	trolled by port fun	ictions.			
bit 14	Unimplem	ented: Read	as '0'						
bit 13	I2CSIDL: I	2Cx Stop in Ic	lle Mode bit						
	1 = Discon	tinues module	operation wh	nen device ente	ers an Idle mode				
h# 40		ues module of	Deration in Idle	e mode	$a 1^2 C a a (a)$				
DIT 12	SCLREL:		e Control dit (v	when operating	as I-C slave)				
	1 = Releas 0 = Holds	SCLX Clock lov	ĸ w (clock streto	ch)					
	If STREN =	= 1:		,					
	Bit is R/W	(i.e., software	can write '0' t	o initiate streto	h and write '1' to	release clock).	Hardware clear		
	at beginnin	g of slave trai	nsmission. Ha	ardware clear a	t end of slave rec	eption.			
	If SIREN =	<u>= 0:</u> (i.e. software	can only wri	te '1' te releas	e clock) Hardwr	are clear at beg	inning of slave		
	transmissio	(1.e., sonware)n.	can only wh			are clear at beg			
bit 11	IPMIEN: In	telligent Perip	heral Manage	ement Interface	e (IPMI) Enable b	it			
	1 = IPMI m	ode is enable	d; all address	es are Acknow	ledged				
	0 = IPMI m	ode is disable	ed						
bit 10	A10M: 10-	Bit Slave Add	ress bit						
	1 = I2CxA[DD is a 10-bit	slave address	5					
hit 9)isahle Slew F	Rate Control h	hit					
bit 5	1 = Slew rate	ate control is c	disabled						
	0 = Slew rate	ate control is e	enabled						
bit 8	SMEN: SM	Bus Input Lev	vels bit						
	1 = Enable 0 = Disable	s I/O pin thres s SMBus inp	sholds complia ut thresholds	ant with SMBu	s specification				
bit 7	GCEN: Ge	neral Call Ena	able bit (when	operating as I	² C slave)				
	1 = Enable	es interrupt wh	nen a general	call address is	received in the I2	CxRSR (modul	e is enabled for		
	recept	ion)	a ia diaablad						
hit 6		ai Gall address	s is uisabled	it (when one re	ting as 1^{2} closes				
	JISEd in co	OLX CIUCK SIN		hit	ung as i °C slave)				
	1 = Enable	s software or	receive clock	stretching					
	0 = Disable	es software or	receive clock	stretching					

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

bit 12-8	TRGSRC1<4:0>: Trigger 1 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN3 and AN2. 11111 = Timer2 period match
	• • •
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 1000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator F current-limit ADC trigger 10110 = Reserved •
	• 10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match •
	• 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00100 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled
bit 7	IRQEN0: Interrupt Request Enable 0 bit 1 = Enables IRQ generation when requested conversion of Channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit 1 = Conversion of Channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

bit 12	2-8	TRGSRC3<4:0>: Trigger 3 Source Selection bits ⁽¹⁾
		Selects trigger source for conversion of Analog Channels AN7 and AN6. 11111 = Timer2 period match
		•
		•
		11011 = Reserved
		11001 = PWM Generator 3 current-limit ADC trigger
		11000 = PWM Generator 2 current-limit ADC triager
		10111 = PWM Generator 1 current-limit ADC trigger
		10110 = Reserved
		•
		•
		10001 - Reserved
		10000 = PWM Generator 3 secondary trigger is selected
		01111 = PWM Generator 2 secondary trigger is selected
		01110 = PWM Generator 1 secondary trigger is selected
		01101 = Reserved
		01100 = Timer1 period match
		• 01000 - Reserved
		00111 = PWM Generator 4 primary trigger is selected
		00110 = PWM Generator 3 primary trigger is selected
		00101 = PWM Generator 2 primary trigger is selected
		00100 = PWM Generator 1 primary trigger is selected
		00011 = PWM Special Event Trigger is selected
		00010 = Global software trigger is selected
		000001 = Individual software ingger is selected
hit 7		IDOEN2: Interrupt Dequest Enabled 2 hit((2))
		In Checkles IDO generation when regulated conversion of Checkles ANE and ANA is completed
		 a = Enables in Q generation when requested conversion of Channels AN5 and AN4 is completed b = IRQ is not generated
bit 6		PEND2: Pending Conversion Status 2 bit ⁽⁽²⁾⁾
		 1 = Conversion of Channels AN5 and AN4 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5		SWTRG2: Software Trigger 2 bit ⁽⁽²⁾⁾
		1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx bits) ⁽³⁾
		This bit is automatically cleared by hardware when the PEND2 bit is set.
		0 = Conversion has not started
Note	1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.
	2:	These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
	3:	The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions
		are in progress, then the conversion will be performed when the conversion resources are available.

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest sections in the "dsPIC33F/PIC24H Family Reference Manual", which are available on the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could be either the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register, 'Wn', or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] Digital Signal Controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

23.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACTERISTICS			Standard ((unless of Operating	Operating Co herwise state temperature	nditions: 3.0V d) -40°C ≤ TA ≤ + -40°C ≤ TA ≤ +	to 3.6V 85°C for Industrial 125°C for Extended				
Parameter No.	Typical ⁽¹⁾	Мах	Units	nits Conditions						
Operating C	Operating Current (IDD) ⁽²⁾									
DC27d	111	140	mA	-40°C		40 MIPS				
DC27a	108	130	mA	+25°C	2 21/	See Note 2, except PWM is				
DC27b	105	130	mA	+85°C	3.3V	operating at 1/4 speed				
DC27c	103	130	mA	+125°C		(PTCON2 = 0x0002)				
DC28d	102	130	mA	-40°C		40 MIPS				
DC28a	100	120	mA	+25°C	2 21/	See Note 2, except PWM is				
DC28b	100	120	mA	+85°C	3.3V	operating at 1/8 speed				
DC28c	100	120	mA	+125°C		(PTCON2 = 0x0003)				

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG disabled
- **3:** These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D		17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N		S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Jumber of Pins N 44				
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2