

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

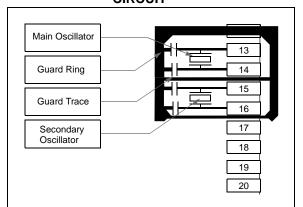
2.5 ICSP[™] Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB[®] REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

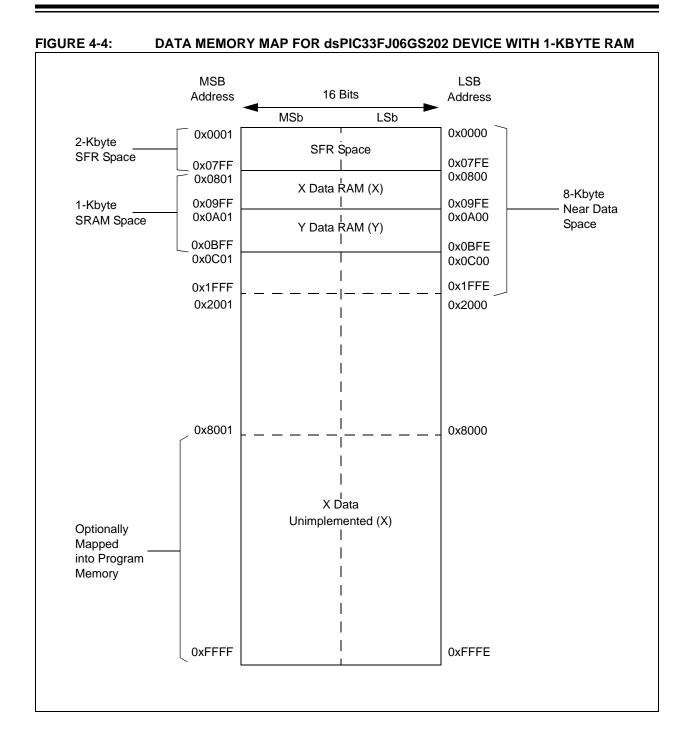
Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.


Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLFBD to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

БA	ΒΛ	R/C-0	R/C-0	D A	R/C-0	D 0	R/W-0				
R-0	R-0	R/C-0 SA ⁽¹⁾	R/C-0 SB ⁽¹⁾	R-0	SAB ^(1,4)	R-0					
OA	OB	SAW	SB(1)	OAB	SAB	DA	DC				
bit 15							bit 8				
R/W-0 ⁽	3) _{R/W-0} (3)	R/W-0 ⁽³⁾	D 0	D 444 o	D 444 0	D 444 0	DAVA				
IPL2 ⁽²			R-0	R/W-0	R/W-0	R/W-0	R/W-0				
) IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	C				
bit 7							bit 0				
Legend:		C = Clearable	bit								
R = Reada	able bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set					
0' = Bit is	cleared	'x = Bit is unk	nown	U = Unimplei	mented bit, read	l as '0'					
				-							
bit 15	OA: Accumul	lator A Overflov	v Status bit								
	1 = Accumula	ator A has over	flowed								
	0 = Accumula	ator A has not c	verflowed								
bit 14		lator B Overflov									
		ator B has over									
L:40		ator B has not c		н							
bit 13		ator A Saturation	-		acmo timo						
		ator A is not sat		en saluraleu al	some ume						
bit 12	SB: Accumul	SB: Accumulator B Saturation 'Sticky' Status bit ⁽¹⁾									
		ator B is saturat			some time						
	0 = Accumula	ator B is not sat	urated								
bit 11	OAB: OA C	OB Combined A	ccumulator O	verflow Status	bit						
		ator A or B has accumulator A o		owed							
bit 10	SAB: SA S	B Combined Ad	cumulator 'Si	ticky' Status bit	(1,4)						
		ator A or B is sa accumulator A o			ed at some time	in the past					
bit 9	DA: DO Loop	Active bit									
	1 = DO loop in										
		ot in progress									
bit 8		U Half Carry/Bo									
	•	out from the 4th sult occurred	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wor	d-sized data)				
	0 = No carry			oit (for byte-siz	ed data) or 8th	low-order bit (fo	or word-sized				
Note 1:	This bit can be rea	ad or cleared (n	ot set).								
2:	The IPL<2:0> bits Level (IPL). The value	are concatenat	ed with the IF								

- IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI			_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	—	_	_	_	_	_	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A			_	_	_	_	PSEMIF	_	_	_	_	_	_	_	_	_	0000
IFS4	008C			_	_	_	_	_	_	_	_	_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IF	0000
IFS7	0092	_	_	—	_	—	_	—		—	_	—	—			ADCP3IF	ADCP2IF	0000
IEC0	0094	-	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	-	_	INT2IE	—	_		—		-		—	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC3	009A	-	_	—	—	_		PSEMIE		-		—	_				_	0000
IEC4	009C	-	_	—	—	_		—		-		—	_			U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	—	—	_		—		-		—	_				_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	—	_		—		-		—	_				PWM3IE	0000
IEC7	00A2	-	_	—	—	_		—		-		—	_			ADCP3IE	ADCP2IE	0000
IPC0	00A4	-	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	-	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0				_	4440
IPC2	00A8	-	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	—	—	_	_	-		-	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	—	_	—	_	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE	_	_	—	—	_	_	-		-		-	-		INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	—	—	—	—	—	_	—	_	—	INT2IP2	INT2IP1	INT2IP0	-	-	-	—	0040
IPC14	00C0	—	—	—	—	—	_	—	_	—	PSEMIP2	PSEMIP1	PSEMIP0	-	-	-	—	0040
IPC16	00C4	-	_	—	—	_		—		-	U1EIP2	U1EIP1	U1EIP0				_	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0			—		_	_		_	4400
IPC24	00D4	_	—	_	—	—	_	—	—	—	_	—	—	_	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0			_				-	_	4400
IPC28	00DC	_		_	_	—		_	_	—	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	0044
INTTREG	00E0	_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-8. INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33E.116GS402/404 DEVICES ONLY

Legend: x = unknown value on Reset, ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred

- 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF		
bit 15							bit		
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
AC2IF	_	_	_	_	_	PWM4IF	PWM3IF		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown		
bit 15 bit 14	 ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
bit 13-10	•	ted: Read as '							
bit 9	1 = Interrupt r	g Comparator equest has oc equest has no		g Status bit					
bit 8	AC3IF: Analo	•	3 Interrupt Fla curred	g Status bit					
bit 7	1 = Interrupt r	g Comparator equest has oc equest has no		g Status bit					
bit 6-2	•	ted: Read as '							
bit 1	PWM4IF: PW 1 = Interrupt r	M4 Interrupt F equest has oc equest has no	lag Status bit curred						
bit 0		M3 Interrupt F equest has oc equest has no	curred						

REGISTER 7-10: IFS6: INTERRUPT FLAG STATUS REGISTER 6

8.1 CPU Clocking System

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture.

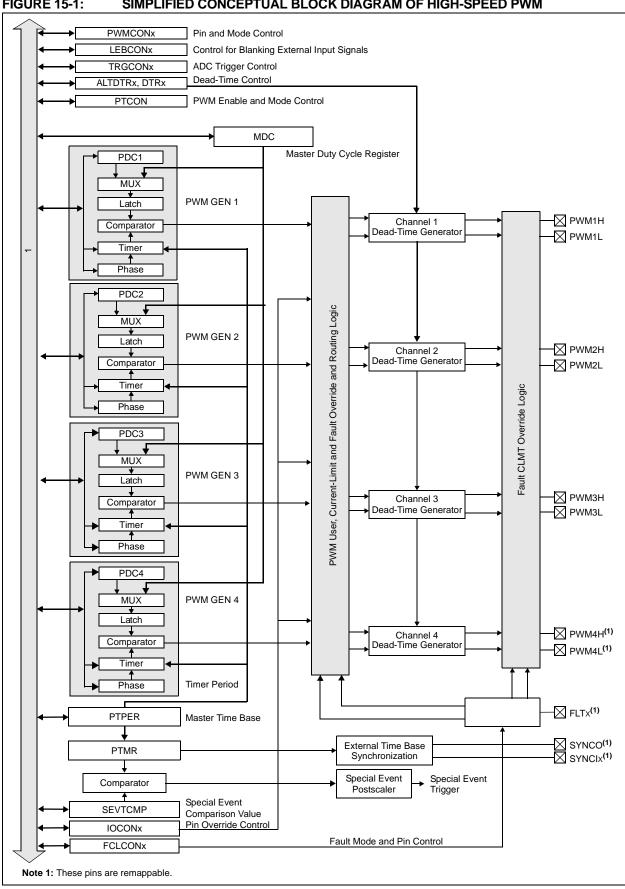
Instruction execution speed or device operating frequency, Fcy, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Reserved	Reserved	xx	100	—
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	—
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1


Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

			-		-		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		—		—	—	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
10000	10,00 0			IV<7:0>	1000 0	10000	1010 0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unl	nown
bit 15-9	Unimplemen	ted: Read as '	י'				
bit 8-0	PLLDIV<8:0>	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000=	= 50 (default)					
	•						
	•						
	•						
	000000010=	= 4					
	000000001 =						
	000000000 =	= 2					

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

FIGURE 15-1: SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF HIGH-SPEED PWM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-					•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	_	P	CLKDIV<2:0>(1)
bit 7			•				bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

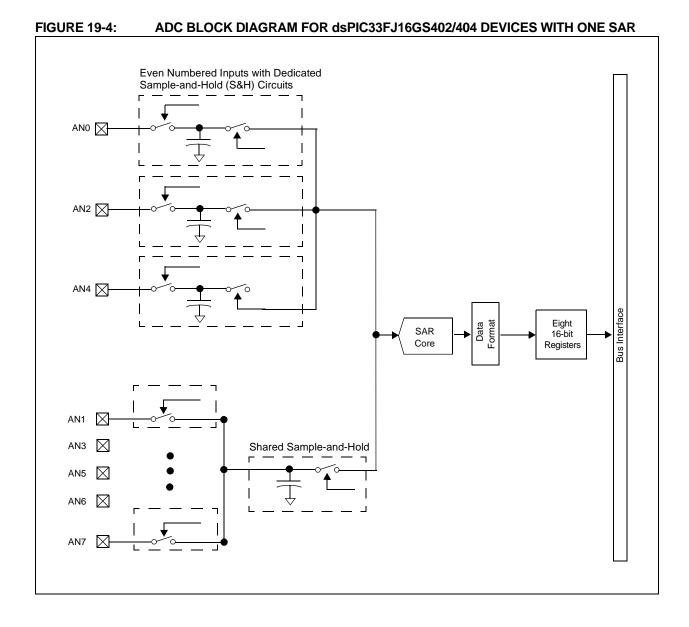
- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

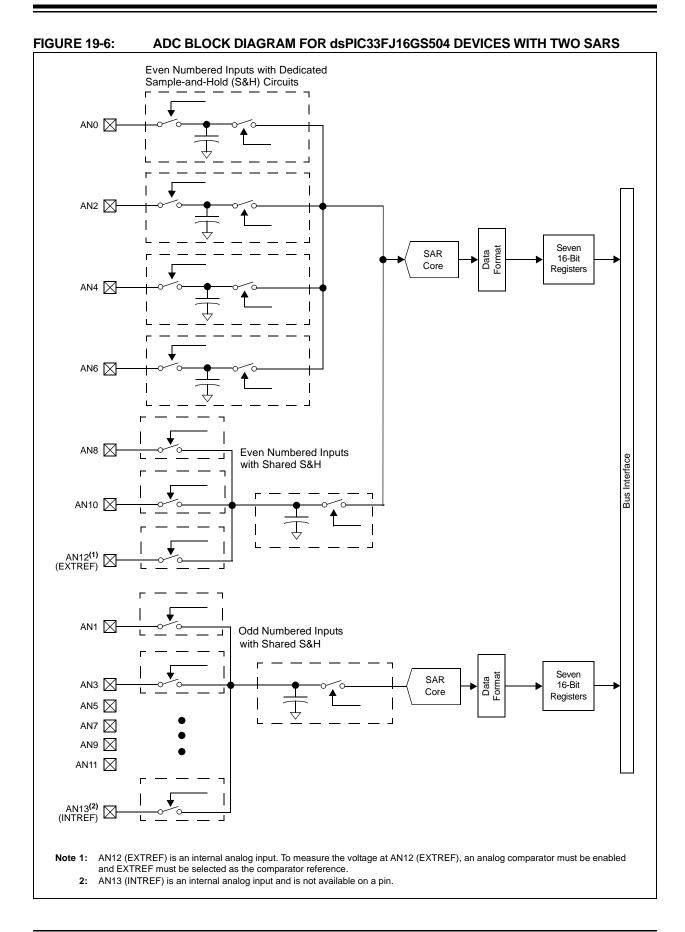
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
SPIEN	_	SPISIDL	—	—		—	—		
bit 15							bit 8		
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0		
	SPIROV	—	—	_		SPITBF	SPIRBF		
bit 7							bit 0		
Legend:		C = Clearable	bit						
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 14 bit 13 bit 12-7 bit 6	0 = Disables Unimplemen SPISIDL: SPI 1 = Discontin 0 = Continues Unimplemen SPIROV: SPI	ted: Read as '(Ix Stop in Idle M ues module opera s module opera ted: Read as '(x Receive Over)' lode bit eration when tion in Idle mo)' flow Flag bit	device enters I ode	dle mode				
	previous 0 = No overfl	data in the SPI low has occurre	xBUF registe		arded. The use	er software has	not read the		
bit 5-2	•	ted: Read as '0							
bit 1	 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty. Automatically set in hardware when CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. 								
bit 0	1 = Receive 0 = Receive data from		RXB is full , SPIxRXB is IxRXB. Auton	empty. Autom		hardware when when core reads			

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

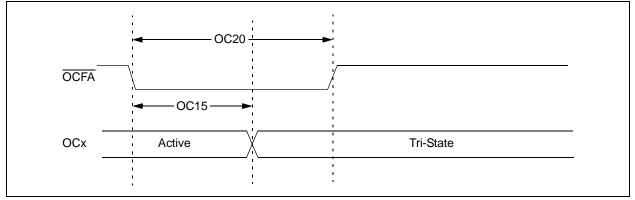

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾					
pit 15							bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
SSEN ⁽³⁾	CKP	MSTEN	SPRE2 ⁽²⁾	SPRE1 ⁽²⁾	SPRE0 ⁽²⁾	PPRE1 ⁽²⁾	PPRE0 ⁽²⁾					
bit 7	CI	MOTEN	SI KLZ.	SFILL IV	SINLO		bit					
51(7)												
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-13	Unimplemen	ted: Read as	ʻ0'									
bit 12	-			er modes only)								
		PI clock is dis PI clock is ena	abled; pin func abled	tions as I/O								
bit 11	DISSDO: Dis	DISSDO: Disable SDOx Pin bit										
		is not used by is controlled by		unctions as I/C)							
oit 10	MODE16: Wo	ord/Byte Comn	nunication Sele	ect bit								
			-wide (16 bits)									
		cation is byte-										
oit 9		ata Input Sam	ple Phase bit									
		a sampled at e	nd of data outp hiddle of data o									
	Slave mode:	·		n Slave mode.								
bit 8	CKE: SPIx CI	ock Edge Sele	ect bit ⁽¹⁾									
						lle clock state (
ait 7			bit (Slave mo		OCK STATE TO ACTI	ve clock state (see bit 6)					
bit 7		select Enable s used for Slav										
				ntrolled by port	function							
bit 6	CKP: Clock F	Polarity Select	bit									
				ve state is a lov e state is a higl								
oit 5	MSTEN: Mas	ter Mode Enat	ole bit									
	1 = Master m 0 = Slave mo											
	he CKE bit is not FRMEN = 1).	used in the Fr	amed SPI mod	des. Program t	his bit to '0' for	the Framed SF	Pl modes					
-	o not set both pri	mary and seco	ondary prescal	ers to a value	of 1:1.							
	bio bit must be al	-			-							

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

- **3:** This bit must be cleared when FRMEN = 1.

© 2008-2014 Microchip Technology Inc.

	REGISTER 19-2:	ADSTAT: ANALOG-TO-DIGITAL STATUS REGISTER
--	----------------	---


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_		—
bit 15							bit 8

U-0	R/C-0, HS						
—	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	P0RDY
bit 7							bit 0

Legend:	C = Clearable bit	HS = Hardware Settabl	le bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	P6RDY: Conversion Data for Pair 6 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 5	P5RDY: Conversion Data for Pair 5 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 4	P4RDY: Conversion Data for Pair 4 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 3	P3RDY: Conversion Data for Pair 3 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 2	P2RDY: Conversion Data for Pair 2 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 1	P1RDY: Conversion Data for Pair 1 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 0	PORDY: Conversion Data for Pair 0 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.

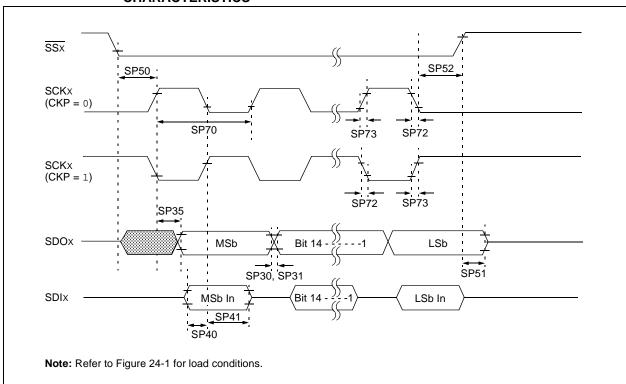

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				35°C for Industrial	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-17: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

26.0 50 MIPS ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating at 50 MIPS.

The specifications for 50 MIPS are identical to those shown in **Section 24.0 "Electrical Characteristics"**, with the exception of the parameters listed in this section.

Parameters in this section begin with the letter "M", which denotes 50 MIPS operation. For example, Parameter DC29a in **Section 24.0** "Electrical Characteristics", is the up to 40 MIPS operation equivalent of MDC29a.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 50 MIPS devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	
Voltage on any 5V tolerant pin with respect to Vss, when Vdd $\geq 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).

3: See the **"Pin Diagrams"** section for 5V tolerant pins.

TABLE A-1:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications Parameter DC12 (Table 23-4).
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).
	Updated Max value for BOR electrical characteristics Parameter BO10 (see Table 23-11).
	Swapped Min and Typ values for Program Memory Parameters D136 and D137 (Table 23-12).
	Updated Typ values for Internal RC Accuracy Parameter F20 and added Extended temperature range to table heading (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer Parameter SY20 and updated conditions, which now refers to Section 20.4 "Watchdog Timer (WDT) " and LPRC Parameter F21a (see Table 23-22).
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).
	Updated Min and Max values for 10-bit High-Speed Analog-to-Digital Module Parameters AD01 and AD11 (see Table 23-36).
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).

NOTES: