

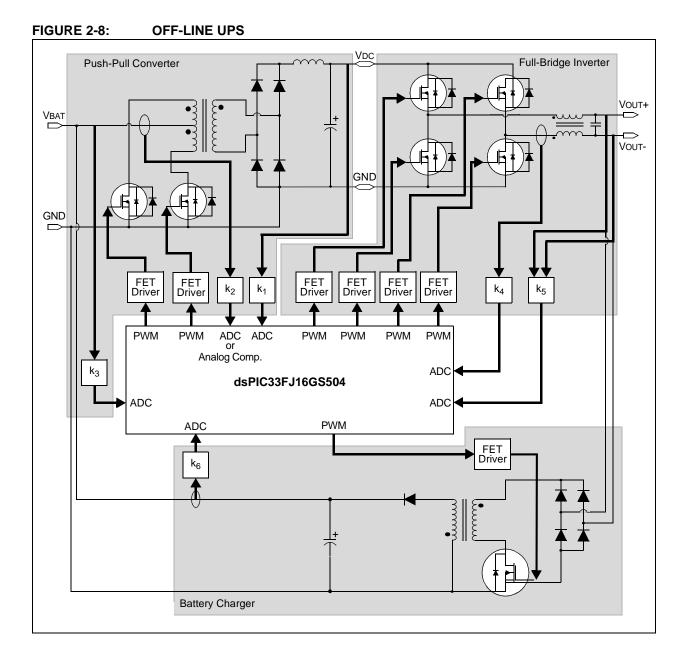
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502t-50i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

© 2008-2014 Microchip Technology Inc.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

TABLE 4-7:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06G202 DEVICES ONLY
------------	--

	4-1.								usric.									
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	—	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	-	T2IF	_			T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	_	_	_		INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	-	-	PSEMIF	_	_	_			-	_	_		0000
IFS4	008C	_	_	_	—	_	_	_	_	—	—	_	_	_	—	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	—	_	_	_	_	—	—	_	_	_	—	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	—	_	_	_	_	AC2IF	_	_	_	_	_	_	_	0000
IFS7	0092	_	_	_	_	_	_	_	_	—	_	_	ADCP6IF	_	_	_	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE		T2IE	_			T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	_	_	INT2IE	—	_		—		—	_		INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_		_	_		PSEMIE		—	_				—	_	_	0000
IEC4	009C	_	_		_	_		—		—	_				—	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE		_	_		—		—	_				—	_	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE		_			_		AC2IE	_				—	_		0000
IEC7	00A2	_			_			_		_	_		ADCP6IE		—	_	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0			_		_	_				—	_		4000
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0		—	_		4440
IPC3	00AA	_			_			_		_	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0		AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_			_			_		_	_				INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_			_			_		_	INT2IP2	INT2IP1	INT2IP0		—	_		0040
IPC14	00C0	_			_			_		_	PSEMIP2	PSEMIP1	PSEMIP0		—	_		0040
IPC16	00C4	_			_			_		_	U1EIP2	U1EIP1	U1EIP0		—	_		0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0		PWM1IP2	PWM1IP1	PWM1IP0	_	_				—	_		4400
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0			_		_	_				—	_		4000
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0	—	—	—	_	_	—	—	_	4400
IPC28	00DC	_	_		—	-		-		—	_				ADCP2IP2	ADCP2IP1	ADCP2IP0	0004
IPC29	00DE		_	_	—	_	-	_	_	_	_	—	_	_	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG	00E0	—	_	_	—	ILR3	ILR2	ILR1	ILR0	—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02
01/X02 and dsPIC33FJ1
PIC33FJ16GS
116GSX02/X04

TABLE 4-18: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	—	—	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426									PDC1<15:0:	>							0000
PHASE1	0428								P	HASE1<15:	0>							0000
DTR1	042A		_							Γ	DTR1<13:0>							0000
ALTDTR1	042C		ALTDTR1<13:0> 0000								0000							
SDC1	042E								;	SDC1<15:0:	>							0000
SPHASE1	0430								SF	PHASE1<15	:0>							0000
TRIG1	0432						٦	rrgcmp<	15:3>						—	_	_	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436						S	TRGCMP<	<15:3>						-	_		0000
PWMCAP1	0438						Р	WMCAP1<	<15:3>						_	_		0000
LEBCON1	043A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0				0000
Legend:																		

TABLE 4-19: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP FOR dsPIC33FJ06GS102/202 AND dsPIC33FJ16GSX02/X04 DEVICES ONLY

	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0		_	_	CAM	XPRES	IUE	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0446									PDC2<15:0	>							0000
PHASE2	0448		PHASE2<15:0> 000								0000							
DTR2	044A	_	_	- DTR2<13:0> 0000							0000							
ALTDTR2	044C	_	_							AL	.TDTR2<13:()>						0000
SDC2	044E									SDC2<15:0	>							0000
SPHASE2	0450								SI	PHASE2<15	:0>							0000
TRIG2	0452							TRGCMP<	:15:3>						_	_	—	0000
TRGCON2	0454	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0456						5	STRGCMP	<15:3>						_	—	_	0000
PWMCAP2	0458						F	WMCAP2	<15:3>							_	_	0000
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0	-	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

FIGURE 7-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR TABLE

		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
Jric	~		
ж Н	~		
rde	~		
0	Interrupt Vector 116	0x0000FC	
nra	Interrupt Vector 117	0x0000FE	
Decreasing Natural Order Priority	Reserved	0x000100	
l b	Reserved	0x000102	
asir	Reserved	_	
rea	Oscillator Fail Trap Vector	_	
Dec	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	-	
	Reserved		1
	Reserved	_	
	Reserved	00001111	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	-	
	~	-	
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x00017L	
		0,000,100	
	~	-	
		-	
	Interrupt Vector 116		1
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	

8.4 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽³⁾	NOSC1 ⁽³⁾	NOSC0 ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF	_	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR							
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only)
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL 000 = Fast RC oscillator (FRC)</pre>
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽³⁾
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL</pre>
	000 = Fast RC oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	<pre>If Clock Switching is Enabled and FSCM is Disabled, (FOSC<fcksm> = 0b01): 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source can be modified by clock switching</fcksm></pre>
bit 6	IOLOCK: Peripheral Pin Select Lock bit
	 1 = Peripheral Pin Select is locked, write to Peripheral Pin Select registers not allowed 0 = Peripheral Pin Select is not locked, write to Peripheral Pin Select registers allowed
bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
Note 1:	Writes to this register require an unlock sequence. Refer to " Oscillator (Part IV) " (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
2:	This register is reset only on a Power-on Reset (POR).
3:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

mode as a transition clock source between the two PLL modes.

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	—	APSTSCLR2	APSTSCLR1	APSTSCLR
bit 15	•					•	bit 0
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	_	_		_	_	_
bit 7							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	emented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		ʻ0' = Bit is c	leared	x = Bit is unkn	own
bit 15	ENAPLL: Au 1 = APLL is e 0 = APLL is d		ole bit				
bit 14	1 = Indicates	PLL Locked Statu that auxiliary PL that auxiliary PL	L is in lock				
bit 13	1 = Auxiliary	oscillators provi	des the sou	rce clock for a	Clock Divider bi auxiliary clock div auxiliary clock dir	rider	
bit 12-11	•	ited: Read as '0				Vider	
bit 10-8	-	:2:0>: Auxiliary (ıt Dividar hits			
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	d by 1 d by 2 d by 4 d by 8 d by 16 d by 32 d by 64					
bit 7	ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit 1 = Primary oscillator is the clock source 0 = No clock input is selected						
bit 6	FRCSEL: Select Reference Clock Source for Auxiliary PLL bit Select FRC clock for auxiliary PLL Input clock source is determined by ASRCSEL bit setting 						
	0 = Input cloc			ASRCSEL bit	setting		

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

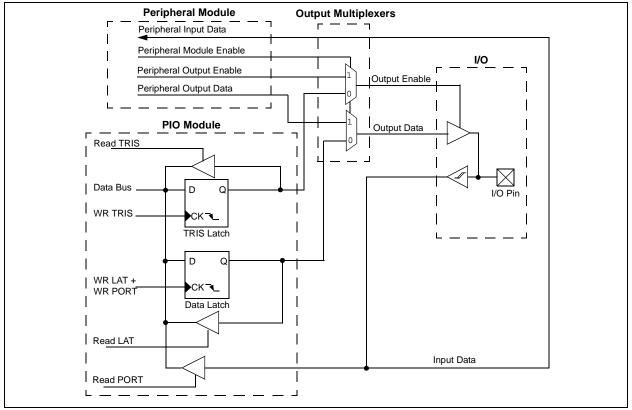
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2008-2014 Microchip Technology Inc.

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- Optionally, the external clock input (T1CK) can be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

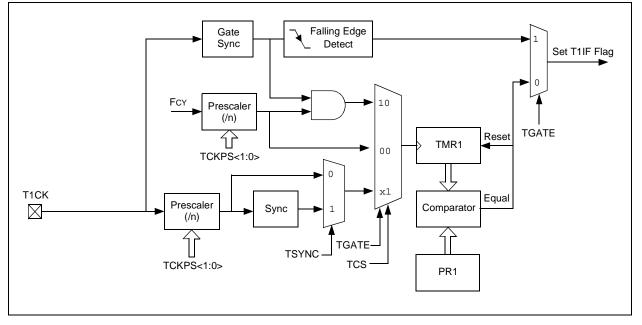
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1: TIN	ER MODE SETTINGS
-----------------	------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

15.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable. Multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of 4 μ s, but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase shift between the two PWM generators.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		SPHAS	SEx<15:8>			
						bit 8
D 444 0	DAMA	DAM 0	DAMA	DAVA	DAMA	DAMA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		SPHA	SEx<7:0>			
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		0' = Bit is cleared $x = Bit is u$		x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 SPHAS Dit	SPHASEx<15:8> R/W-0 R/W-0 R/W-0 SPHASEx<7:0> SPHASEx<7:0>	SPHASEx<15:8> R/W-0 R/W-0 R/W-0 R/W-0 SPHASEx<7:0> U = Unimplemented bit, read	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SPHASEx<15:8> Normalized and the second se

bit 15-0 SPHASEx<15:0>: Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<ITB> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<PMOD> = 11); PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Independent Time Base period value for PWMxL only

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both primary and secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

21.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

21.1 Configuration Bits

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide nonvolatile memory implementations for device Configuration bits. Refer to **"Device Configuration"** (DS70194) in the *"dsPIC33F/PIC24H Family Reference Manual"* for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 21-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFF), which can only be accessed using Table Reads and Table Writes.

The device Configuration register map is shown in Table 21-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	—	_		_	BSS2	BSS1	BSS0	BWRP
0xF80002	Reserved	—	_	_				—	—
0xF80004	FGS	—	_	_			GSS1	GSS0	GWRP
0xF80006	FOSCSEL	IESO	_	_		_		FNOSC1	FNOSC0
0xF80008	FOSC	FCKSM1	FCKSM0	IOL1WAY			OSCIOFNC	POSCMD1	POSCMD0
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0
0xF8000C	FPOR	—	—	—	—	Reserved ⁽²⁾	FPWRT2	FPWRT1	FPWRT0
0xF8000E	FICD	Reser	ved ⁽¹⁾	JTAGEN	GEN — — — ICS1 ICS0				
0xF80010	FUID0	User Unit ID Byte 0							
0xF80012	FUID1				Us	er Unit ID Byte	e 1		

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

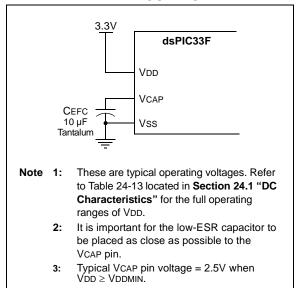
Note 1: These bits are reserved for use by development tools and must be programmed to '1'.

2: This bit reads the current programmed value.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit
			1 = Boot segment can be written
			0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size bits
			x11 = No boot program Flash segment
			Boot Space is 256 Instruction Words (except interrupt vectors): 110 = Standard security; boot program Flash segment ends at 0x0003FE
			010 = High security; boot program Flash segment ends at 0x0003FE
			Boot Space is 768 Instruction Words (except interrupt vectors):
			101 = Standard security; boot program Flash segment ends at 0x0007FE
			001 = High security; boot program Flash segment ends at 0x0007FE
			Boot Space is 1792 Instruction Words (except interrupt vectors): 100 = Standard security; boot program Flash segment ends at 0x000FFE
			000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits
			11 = User program memory is not code-protected
			10 = Standard security
014/00	500		0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit
			 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	Two-speed Oscillator Start-up Enable bit
			1 = Start-up device with FRC, then automatically switch to the
			user-selected oscillator source when ready
			0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits
		is enabled, RTSP effect	111 = Internal Fast RC (FRC) Oscillator with Postscaler
		is on any	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator
		device Reset;	100 = Reserved
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL
		Immediate	010 = Primary (XT, HS, EC) Oscillator
			001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits
		minediate	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
			01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit
			1 = Allows only one reconfiguration
			0 = Allows multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)
			1 = OSC2 is the clock output
			0 = OSC2 is the general purpose digital I/O pin

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

21.2 On-Chip Voltage Regulator


The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 21-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 24-13 located in **Section 24.1 "DC Characteristics"**.

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 21-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

21.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] Digital Signal Controllers (DSC) are supported with a full range of software and hardware development tools:

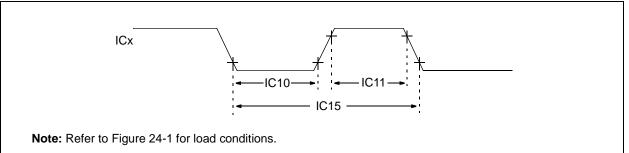
- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

23.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:


- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

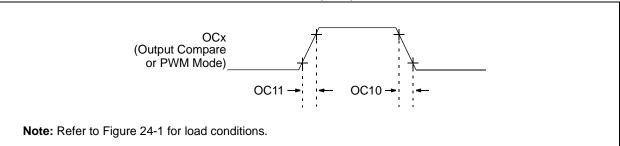


TABLE 24-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characte	ristic ⁽¹⁾ Min		Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No prescaler	0.5 Tcy + 20	_	ns		
			With prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20	—	ns		
			With prescaler	10	—	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = Prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	—		ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2008-2014} Microchip Technology Inc.

	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
				g tempe	erature		$-40^{\circ}C \le TA \le +150^{\circ}C \text{ for High}$ Temperature		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	_	_	0.4	V	Io∟ ≤ 3.6 mA, VDD = 3.3V See Note 1		
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins – RC0, RC3-RC8, RC11-RC13	_	_	0.4	V	$\begin{array}{l} \text{IOL} \leq 6 \text{ mA, VDD} = 3.3 \text{V} \\ \text{See } \textbf{Note 1} \end{array}$		
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	$\label{eq:IDL} \begin{array}{l} \text{IOL} \leq 12 \text{ mA}, \text{ VDD} = 3.3\text{V} \\ \text{See } \textbf{Note 1} \end{array}$		
DO20 Vон	Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	2.4	_	_	~	IoL ≥ -4 mA, VDD = 3.3V See Note 1			
	Vон	Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.4	_	_	V	IoL ≥ -8 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	Io∟≥ -16 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins:	1.5	_	—		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3.9 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } \mbox{Note 1} \end{array}$		
		4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5-	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1		
		RB10, RB15, RC1, RC2, RC9, RC10	3.0	—	—		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins:	1.5	_	_		$\begin{array}{l} \text{IOH} \geq \text{-7.5 mA, VDD} = 3.3\text{V} \\ \text{See Note 1} \end{array}$		
DO20A	VoH1	8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -15 mA, VDD = 3.3V See Note 1		
		16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.0	_	_	V	IOH ≥ -14 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -7 mA, VDD = 3.3V See Note 1		

TABLE 25-5: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS VS. VOLTAGE

Voo Bongo Tomo Bongo	Tomp Bongo	Max MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04	
	3.0-3.6V ⁽¹⁾	-40°C to +85°C	50	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

TABLE 26-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTIC	S	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical	Мах	Units	Inits Conditions				
Operating Current (IDD) ⁽¹⁾								
MDC29d	105	125	mA	-40°C				
MDC29a	105	125	mA	+25°C	3.3V	50 MIPS		
MDC29b	105	125	mA	+85°C				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG is disabled

Section Name	Update Description			
Section 16.0 "Inter-Integrated Circuit (I ² C™)"	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:			
	 16.3 "I²C Interrupts" 			
	• 16.4 "Baud Rate Generator" (retained Figure 16-1: I ² C Block Diagram)			
	 16.5 "I²C Module Addresses 			
	 16.6 "Slave Address Masking" 			
	16.7 "IPMI Support"			
	 16.8 "General Call Address Support" 			
	16.9 "Automatic Clock Stretch"			
	 16.10 "Software Controlled Clock Stretching (STREN = 1)" 			
	16.11 "Slope Control"			
	16.12 "Clock Arbitration"			
	• 16.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration			
Section 17.0 "Universal	Removed the following sections, which are now available in the related			
Asynchronous Receiver Transmitter	section of the dsPIC33F/PIC24H Family Reference Manual:			
(UART)"	 17.1 "UART Baud Rate Generator" 			
	 17.2 "Transmitting in 8-bit Data Mode 			
	 17.3 "Transmitting in 9-bit Data Mode 			
	 17.4 "Break and Sync Transmit Sequence" 			
	 17.5 "Receiving in 8-bit or 9-bit Data Mode" 			
	 17.6 "Flow Control Using UxCTS and UxRTS Pins" 			
	 17.7 "Infrared Support" 			
	Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 17-2).			
Section 18.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated bit value information for Analog-to-Digital Control Register (see Register 18-1).			
	Updated TRGSRC6 bit value for Timer1 period match in the Analog-to- Digital Convert Pair Control Register 3 (see Register 18-8).			

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)