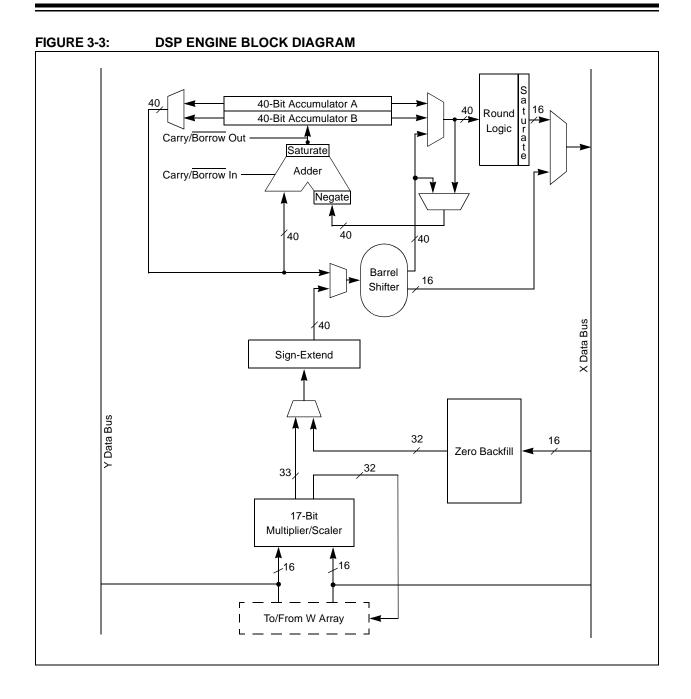


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502t-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS Register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive
 9.31 (0x7FFFFFFFF) or maximally negative
 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set
- until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	-	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI			_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	_	T2IF	_	_	_	T1IF	OC1IF	_	INT0IF	0000
IFS1	0086		_	INT2IF	_	-	_	_	_	_	_	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A		_	_	_	-	_	PSEMIF	_	_	_	_	_	_	_	_	_	0000
IFS4	008C	_	_	—	_	_		—		—				—	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	—	_	_		—		—				—	_		_	0000
IFS6	0090	ADCP1IF	ADCP0IF	—	_	_		_		—				_				0000
IFS7	0092			—	_	_		_		—				_			ADCP2IF	0000
IEC0	0094			ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE		T2IE				T1IE	OC1IE		INT0IE	0000
IEC1	0096			INT2IE	—	_		_		—			INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC3	009A			—	_	_		PSEMIE		—				_				0000
IEC4	009C			—	_	_		_		—				_		U1EIE		0000
IEC5	009E	PWM2IE	PWM1IE	—	_	_		_		—				_				0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	_	_		_		—				_				0000
IEC7	00A2			—	_	_		_		—				_			ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—				—	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6		T2IP2	T2IP1	T2IP0	_		_		—				_				4000
IPC2	00A8	_	U1RXIP2	U1RXIP2	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	-	-	-	4440
IPC3	00AA	_	_	—	—	—	-	—	_		ADIP2	ADIP1	ADIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	—	-	—	_	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE	_	_	—	—	—	-	—	_	—	-	-	-	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	_	—	—	—	-	—	_	—	INT2IP2	INT2IP1	INT2IP0	—	-	-	-	0040
IPC14	00C0	—	_	—	—	—	-	—	_	—	PSEMIP2	PSEMIP1	PSEMIP0	—	-	-	-	0040
IPC16	00C4	—	_	—	—	—	-	—	_	—	U1EIP2	U1EIP1	U1EIP0	—	-	-	-	0040
IPC23	00D2	-	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	—		-	-	—		-		4400
IPC27	00DA	-	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	—		-	-	—		-		4400
IPC28	00DC	_	_	-	_	_	_	-	_	—				—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0004
INTTREG	00E0	_	_		_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	—	_	_	—	_	—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	—	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	_	_	PSEMIF	—	_	_	—	_	—	_	_	_	0000
IFS4	008C		_	—	_	_						_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	_	_	_		-	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	-	_	AC4IF	AC3IF	AC2IF	_	—	—	_	_	PWM4IF	PWM3IF	0000
IFS7	0092	_	-	_	_	-	_	—	—	_	_	—	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	-	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	_	-	INT2IE	_	-	_	—	—	_	_	—	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	-	—	_	-	_	PSEMIE	—	_	_	—	—	_	_		-	0000
IEC4	009C	_	-	_	_	-	_	—	—	_	_	—	—	_	_	U1EIE	-	0000
IEC5	009E	PWM2IE	PWM1IE	—	_	_	_	—	—	—	_	—	—	_	_	-	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	_	_	_	_	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_	_	_	_	_	_	_	_	_	_	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	—	_	-	_	—	—		ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	—	_	-	_	—	—	_	_	—	—	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	-	_	_	-	_	—	—	_	INT2IP2	INT2IP1	INT2IP0	_	_		-	0040
IPC14	00C0	_	-	_	_	-	_	—	—	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_		-	0040
IPC16	00C4	_	-	_	_	-	_	—	_	_	U1EIP2	U1EIP1	U1EIP0	_	_		-	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400
IPC24	00D4	_	—	—	—	—	—	_	_	_	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0	0044
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0	_	_	_	_	_	_	_	_	_	_	—	—	4000
IPC26	00D8	_	_	—	_	_	_	_	_	_	AC4IP2	AC4IP1	AC4IP0	_	AC3IP2	AC3IP1	AC3IP0	0440
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	_	_	_	_	_	_	_	4400
IPC28	00DC	_	ADCP5IP2	ADCP5IP1	ADCP5IP0	_	ADCP4IP2	ADCP4IP1	ADCP4IP0	_	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	4444
IPC29	00DE	_	_	_	_	_		_	_	_	_	_	—	_	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG		_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	

TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 System Reset

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source. A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	_	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd(1)	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd(1)	Tost ⁽²⁾	ТLOCК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	TLOCK ⁽³⁾
LPRC	Toscd ⁽¹⁾	_	—	Toscd ⁽¹⁾

TABLE 6-1: OSCILLATOR DELAY

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

	• = • • • • • • • • • • • • • • • • • •						
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	IC2MD	IC1MD
it 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—		_		OC2MD	OC1MD
oit 7	·						bit C
_egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-10 bit 9 bit 8	IC2MD : Input 1 = Input Cap 0 = Input Cap IC1MD : Input 1 = Input Cap	ture 2 module ture 2 module Capture 1 Moo ture 1 module	dule Disable bit is disabled is enabled dule Disable bit is disabled				
bit 7-2		ture 1 module t ed: Read as 'd					
bit 1	1 = Output Co	out Compare 2 ompare 2 modu ompare 2 modu		e bit			
bit 0	1 = Output Co	out Compare 1 ompare 1 modu ompare 1 modu		e bit			

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	—	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0				
bit 15							bit				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	<u> </u>	—	—	—			_				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown				
bit 15-14	Unimplemer	ted: Read as '	כי								
bit 13-8	FLT1R<5:0>	: Assign PWM I	ault Input 1 (FLT1) to the Co	orresponding R	Pn Pin bits					
	111111 = Input tied to Vss										
	TTTTTT - UN	out fied to VSS									
	100011 = In	out tied to RP35									
	100011 = Ing 100010 = Ing	out tied to RP35 out tied to RP34	ŀ								
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }								
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34	 }								
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }								
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }								
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }								
	100011 = Ing 100010 = Ing 100001 = Ing 100000 = Ing •	out tied to RP35 out tied to RP34 out tied to RP33	 }								

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

RP18R3

RP18R2

RP18R1

RP18R0

bit 0

RP18R4

REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

RP18R5

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP19R<5:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP18R<5:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	
bit 7						•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$				
bit 15-14	Unimplemen	ted: Read as '	כ'					

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

bit 13-8	RP21R<5:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP20R<5:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN	0-0	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾		
bit 15		TIGIDE	OLUTAI	OLILIN			bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SYNCEN ⁽¹⁾		SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3(1)	SEVTPS2(1)	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾		
bit 7							bit 0		
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit				
R = Readable	e bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	1 = PWM m	M Module Enabl nodule is enable nodule is disable	d						
bit 14	Unimplem	ented: Read as	'0'						
bit 13	PTSIDL: P	WM Time Base \$	Stop in Idle Mod	e bit					
		me base halts in me base runs in							
bit 12		pecial Event Inte	-						
	•	event interrupt i event interrupt i							
bit 11	SEIEN: Spe	ecial Event Inter	rupt Enable bit						
		event interrupt i event interrupt i							
bit 10	EIPU: Enat	ole Immediate Po	eriod Updates bi	t(1)					
		Period register is Period register u			oundaries				
bit 9	SYNCPOL	: Synchronizatio	n Input/Output P	olarity bit ⁽¹⁾					
		x and SYNCO po x and SYNCO a	•	d (active-low)					
bit 8	SYNCOEN	: Primary Time E	Base Sync Enab	le bit ⁽¹⁾					
) output is enabl) output is disab							
bit 7	SYNCEN:	External Time Ba	ase Synchroniza	tion Enable bit	(1)				
		al synchronizatio al synchronizatio							
bit 6	Unimplem	ented: Read as	'0'						
bit 5-4	SYNCSRC	<1:0>: Synchror	nous Source Sel	ection bits ⁽¹⁾					
	11 = Reser 10 = Reser 01 = SYNC 00 = SYNC	ved ll2							
		uld be changed o							

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

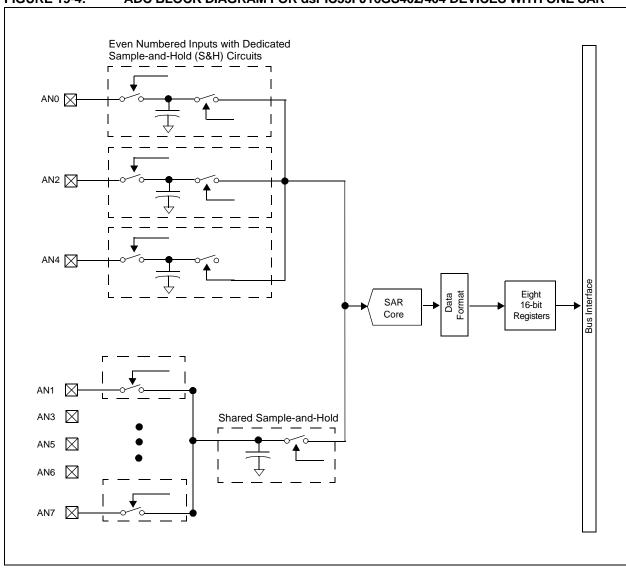
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-					•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	_	P	CLKDIV<2:0>(1)
bit 7			•				bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'


- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

FIGURE 19-4: ADC BLOCK DIAGRAM FOR dsPIC33FJ16GS402/404 DEVICES WITH ONE SAR

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

bit 12-8	TRGSRC1<4:0>: Trigger 1 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN3 and AN2. 11111 = Timer2 period match
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 1000 = PWM Generator 2 current-limit ADC trigger
	<pre>10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved •</pre>
	• 10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match •
	• 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00100 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled
bit 7	IRQEN0: Interrupt Request Enable 0 bit 1 = Enables IRQ generation when requested conversion of Channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit 1 = Conversion of Channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

TRGSRC2<4:0>: Trigger 2 Source Selection bits⁽²⁾ bit 4-0 Selects trigger source for conversion of Analog Channels AN5 and AN4. 11111 = Timer2 period match 11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved 10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled

- Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.
 - 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
 - **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

20.3 Module Applications

This module provides a means for the SMPS dsPIC[®] DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

20.4 DAC

The range of the DAC is controlled through an analog multiplexer that selects either AVDD/2, an internal reference source, INTREF, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 20-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

20.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

20.6 Digital Logic

The CMPCONx register (see Register 20-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one TCY width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 20-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

20.7 Comparator Input Range

The comparator has a limitation for the input Common-Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common-Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

20.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

20.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control x Register
- CMPDACx: Comparator DAC x Control Register

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit
			1 = Boot segment can be written
			0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size bits
			x11 = No boot program Flash segment
			Boot Space is 256 Instruction Words (except interrupt vectors): 110 = Standard security; boot program Flash segment ends at 0x0003FE
			010 = High security; boot program Flash segment ends at 0x0003FE
			Boot Space is 768 Instruction Words (except interrupt vectors):
			101 = Standard security; boot program Flash segment ends at 0x0007FE
			001 = High security; boot program Flash segment ends at 0x0007FE
			Boot Space is 1792 Instruction Words (except interrupt vectors): 100 = Standard security; boot program Flash segment ends at 0x000FFE
			000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits
			11 = User program memory is not code-protected
			10 = Standard security
014/00			0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit
			 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	Two-speed Oscillator Start-up Enable bit
			1 = Start-up device with FRC, then automatically switch to the
			user-selected oscillator source when ready
			0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits
		is enabled, RTSP effect	111 = Internal Fast RC (FRC) Oscillator with Postscaler
		is on any	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator
		device Reset;	100 = Reserved
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL
		Immediate	010 = Primary (XT, HS, EC) Oscillator
			001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits
		ininiodiate	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
			01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit
			1 = Allows only one reconfiguration
			0 = Allows multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)
			1 = OSC2 is the clock output
			0 = OSC2 is the general purpose digital I/O pin

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

Bit Field	Register	RTSP Effect	Description
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select Enable bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use.

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

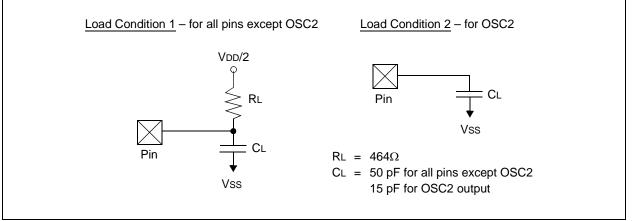
Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss, when VDD $\geq 3.0 V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when VDD < $3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

25.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in **Section 24.2** "AC Characteristics and Timing **Parameters**", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 24.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 25-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
AC CHARACTERISTICS	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature
	Operating voltage VDD range as described in Table 25-1.

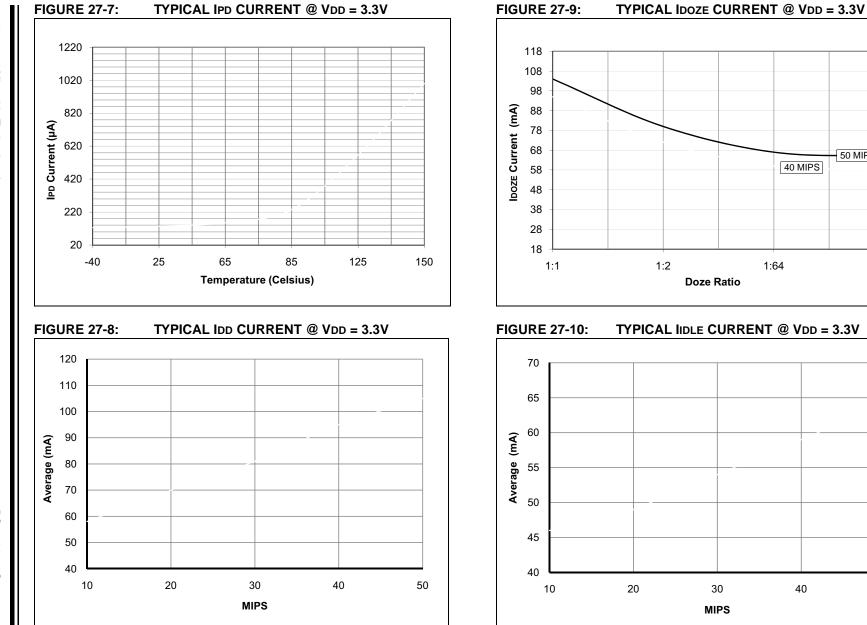

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-8: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

50 MIPS

1:128

50

Section Name	Update Description
Section 16.0 "Inter-Integrated Circuit (I ² C™)"	Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual:
	 16.3 "I²C Interrupts"
	• 16.4 "Baud Rate Generator" (retained Figure 16-1: I ² C Block Diagram)
	 16.5 "I²C Module Addresses
	 16.6 "Slave Address Masking"
	16.7 "IPMI Support"
	 16.8 "General Call Address Support"
	16.9 "Automatic Clock Stretch"
	 16.10 "Software Controlled Clock Stretching (STREN = 1)"
	16.11 "Slope Control"
	16.12 "Clock Arbitration"
	• 16.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration
Section 17.0 "Universal	Removed the following sections, which are now available in the related
Asynchronous Receiver Transmitter	section of the dsPIC33F/PIC24H Family Reference Manual:
(UART)"	 17.1 "UART Baud Rate Generator"
	 17.2 "Transmitting in 8-bit Data Mode
	 17.3 "Transmitting in 9-bit Data Mode
	 17.4 "Break and Sync Transmit Sequence"
	 17.5 "Receiving in 8-bit or 9-bit Data Mode"
	 17.6 "Flow Control Using UxCTS and UxRTS Pins"
	 17.7 "Infrared Support"
	Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 17-2).
Section 18.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated bit value information for Analog-to-Digital Control Register (see Register 18-1).
	Updated TRGSRC6 bit value for Timer1 period match in the Analog-to- Digital Convert Pair Control Register 3 (see Register 18-8).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)