

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

TABLE 4-25: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	-	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	_	-	_	_	PCFG7	PCFG6	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			—	—	—	_	_	—					P3RDY	—	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<1	5:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	_	_	_	_	_	_	_	_	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF6	032C	ADC Data Buffer 6 xx:											xxxx					
ADCBUF7	032E	ADC Data Buffer 7 x											xxxx					

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	—	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	_	_	_	_	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	_	_	_	_	_	_	_	_	_	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<15	:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	_	_	_	_	_	_	_	_	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCBUF0	0320								ADC Da	ata Buffer	0							xxxx
ADCBUF1	0322								ADC Da	ata Buffer	1							xxxx
ADCBUF2	0324								ADC Da	ata Buffer	2							xxxx
ADCBUF3	0326								ADC Da	ata Buffer	3							xxxx
ADCBUF4	0328		ADC Data Buffer 4 xxxxx															
ADCBUF5	032A	ADC Data Buffer 5 xxxx																

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-49: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

	Normal Address					Bit-Reversed Address						
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts (Part IV)" (DS70300) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement up to 35 unique interrupts and 4 non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices clear their registers in response to a Reset, which forces the PC to zero. The Digital Signal Controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IF	ADCP0IF	—	—	_	—	AC4IF	AC3IF
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
AC2IF	—	—			—	PWM4IF	PWM3IF
bit 7							bit (
Logond:							
R – Roadable	hit	W – Writable	hit	II – I Inimpler	mented hit rea	ud as 'O'	
n = Value at I		'1' = Bit is set	Dit	0' = Bit is clearly	ared	v – Bitis unkn	0.000
	FOR				areu		OWIT
hit 15		C Pair 1 Conv	ersion Done I	nterrunt Flag S	status hit		
bit 10	1 = Interrupt r	equest has oc	curred	interrupt i lag e			
	0 = Interrupt r	equest has not	toccurred				
bit 14	ADCPOIF: AD	DC Pair 0 Conv	ersion Done I	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has not	t occurred				
bit 13-10	Unimplemen	ted: Read as '	0'				
bit 9	AC4IF: Analo	g Comparator	4 Interrupt Fla	ag Status bit			
	1 = Interrupt r	equest has oc	curred				
hit 0		equest has not	Coccurred	a Statua hit			
	1 - Interrupt r	g Comparator	S Interrupt Fia	ig Status bit			
	0 = Interrupt r	equest has not	t occurred				
bit 7	AC2IF: Analo	g Comparator	2 Interrupt Fla	ng Status bit			
	1 = Interrupt r	equest has oc	curred	3			
	0 = Interrupt r	equest has not	t occurred				
bit 6-2	Unimplemen	ted: Read as '	0'				
bit 1	PWM4IF: PW	M4 Interrupt F	lag Status bit				
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	request has not	t occurred				
bit 0	PWM3IF: PW	M3 Interrupt F	lag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has not	curred t occurred				

REGISTER 7-10: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_			—	—	OC2MD	OC1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	IC2MD: Input	Capture 2 Mod	dule Disable bi	t			
	1 = Input Cap	ture 2 module	is disabled				
		ture 2 module	is enabled				
DIT 8	IC1MD: Input	Capture 1 Mod	ule Disable bi	t			
	$\perp = $ Input Cap 0 = Input Cap	ture 1 module	is disabled				
bit 7-2	Unimplemen	ted: Read as ')'				
bit 1	OC2MD: Outr	out Compare 2	Module Disabl	le bit			
	1 = Output Co	ompare 2 modu	le is disabled				
	0 = Output Co	ompare 2 modu	le is enabled				
bit 0	OC1MD: Outp	out Compare 1	Module Disabl	le bit			
	1 = Output Co	ompare 1 modu	le is disabled				
	0 = Output Co	ompare 1 modu	ile is enabled				

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

10.6.2.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-15 through Register 10-31). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF **REMAPPABLE OUTPUT** FOR RPn RPORn<5:0> Default 0 U1TX Output Enable 3 U1RTS Output Enable 4 **Output Enable** • • . OC2 Output Enable 19 PWM4L Output Enable 45 Default 0 U1TX Output 3 U1RTS Output 4 RPn Output Data • \mathbf{X} • . OC2 Output 19

45

PWM4L Output

TABLE 10-2:	OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPORn<5:0>	Output Name
NULL	000000	RPn tied to default port pin
U1TX	000011	RPn tied to UART1 transmit
U1RTS	000100	RPn tied to UART1 Ready-to-Send
SDO1	000111	RPn tied to SPI1 data output
SCK1	001000	RPn tied to SPI1 clock output
SS1	001001	RPn tied to SPI1 slave select output
OC1	010010	RPn tied to Output Compare 1
OC2	010011	RPn tied to Output Compare 2
SYNCO1	100101	RPn tied to external device synchronization signal via PWM master time base
REFCLKO	100110	REFCLK output signal
ACMP1	100111	RPn tied to Analog Comparator Output 1
ACMP2	101000	RPn tied to Analog Comparator Output 2
ACMP3	101001	RPn tied to Analog Comparator Output 3
ACMP4	101010	RPn tied to Analog Comparator Output 4
PWM4H	101100	RPn tied to PWM output pins associated with PWM Generator 4
PWM4L	101101	RPn tied to PWM output pins associated with PWM Generator 4

© 2008-2014 Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—			_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16- 0 = Stops 16-	·bit Timer1 ·bit Timer1					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	TSIDL: Timer	1 Stop in Idle N	Node bit				
	1 = Discontin	ues module op	eration when	device enters l	ldle mode		
	0 = Continue	s module opera	ation in Idle m	ode			
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	er1 Gated Time	Accumulation	n Enable bit			
	This bit is ign	<u>⊥:</u> ored.					
	When TCS =	0:					
	1 = Gated times	ne accumulation	n is enabled				
	0 = Gated tim	Time accumulation	n is disabled	- O-l			
DIT 5-4	10KPS<1:0>		JOCK Prescal	e Select bits			
	10 = 1.230 10 = 1.64						
	01 = 1:8						
h it 0	00 = 1:1	tad. Daad aa (0'				
DIT 3		ited: Read as	U aak Innut Sun	obranization C	alaat hit		
DIL Z	When TCS =		ock input Syn	chronization Se			
	1 = Synchron	<u>izes external c</u>	lock input				
	0 = Does not	synchronize ex	kternal clock i	nput			
	When TCS =	<u>0:</u> ored					
bit 1	TCS: Timer1	Clock Source S	Select bit				
	1 = External of	clock from T1C	K pin (on the	rising edge)			
	0 = Internal c	lock (FCY)		,			
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enable; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	Poter to "ILAPT" (DS70188) in the "deDIC22E/DIC24H Family Poteronee Manual" for information on

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33F/PIC24H Family Reference Manual*" for information on enabling the UART module for transmit operation.

NOTES:

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F SMPS comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module contains the following major features:

- 16 selectable comparator inputs
- Up to four analog comparators
- 10-bit DAC for each analog comparator

- Programmable output polarity
- Interrupt generation capability
- DACOUT pin to provide DAC output
- DAC has three ranges of operation:
 AVDD/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 20-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

IABL	E 22-2:	INSIRU	JCTION SET OVERVIE				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , aND	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn.f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and Store Accumulator	1	1	None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No. Symbol Character			istic	Min ⁽¹⁾	Тур	Мах	Units	Conditions		
BO10	VBOR	BOR Event on VDD Tra High-to-Low BOR Event is Tied to \ Voltage Decrease	ansition /DD Core	2.55	_	2.79	V	See Note 2		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				s: 3.0V to 3.6V ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max U		Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132B	Vpew	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated, -40°C to +125°C
D135	IDDP	Supply Current during Programming	—	10	—	mA	
D136a	Trw	Row Write Time	1.477	—	1.538	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2
D136b	Trw	Row Write Time	1.435	—	1.586	ms	Trw = 11064 FRC cycles, TA = +125°C, See Note 2
D137a	Тре	Page Erase Time	22.5	_	23.4	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2
D137b	TPE	Page Erase Time	21.9	_	24.2	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2
D138a	Tww	Word Write Cycle Time	47.4	—	49.3	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2
D138b	Tww	Word Write Cycle Time	46	—	50.9	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2

TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions:		ns: $-40^{\circ}C \le TA \le +85^{\circ}C$ for In $-40^{\circ}C \le TA \le +125^{\circ}C$ for E	-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
_	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)	

Note 1: Typical VCAP voltage = 2.5 volts when $VDD \ge VDDMIN$.

FIGURE 24-2: EXTERNAL CLOCK TIMING

TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 40	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	—	DC	ns		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	Device Supply							
AD01	AVdd	Module VDD Supply	—	—	—	—	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4	
AD02	AVss	Module Vss Supply	_	—		_	AVss is internally connected to Vss	
		•	Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V		
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V		
AD12	IAD	Operating Current	_	8	_	mA		
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100Ω	
AD17	Rin	Recommended Impedance Of Analog Voltage Source	—	—	100	Ω		
	DC Accuracy @ 1.5 Msps							
AD20A	Nr	Resolution		10 Data	Bits			
AD21A	INL	Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb		
AD22A	DNL	Differential Nonlinearity	-0.9	±0.6	+0.9	LSb		
AD23A	Gerr	Gain Error	13	15	22	LSb		
AD24A	EOFF	Offset Error	6	7	8	LSb		
AD25A		Monotonicity ⁽¹⁾			—	—	Guaranteed	
	1	DC Ac	curacy	@ 1.7 Msp	S			
AD20B	Nr	Resolution		10 Data	Bits	-		
AD21B	INL	Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb		
AD22B	DNL	Differential Nonlinearity	-1.0	±1.0	+1.5	LSb		
AD23B	Gerr	Gain Error	13	15	22	LSb		
AD24B	EOFF	Offset Error	6	7	8	LSb		
AD25B		Monotonicity ⁽¹⁾				—	Guaranteed	
		DC Ac	curacy	@ 2.0 Msp	S			
AD20C	Nr	Resolution		10 Data	Bits			
AD21C	INL	Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb		
AD22C	DNL	Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb		
AD23C	Gerr	Gain Error	14	16	23	LSb		
AD24C	EOFF	Offset Error	6	7	8	LSb	-	
AD25C	—	Monotonicity		<u> </u>	—	—	Guaranteed	
	TUD	Dyna	amic Pe	rtormance				
AD30		Iotal Harmonic Distortion	—	-/3		dB		
AD31	SINAD	Signal to ivoise and Distortion		58 70	_	dB		
AD32	SFUK	Spurious Free Dynamic Range		-13				
AD33		Effective Number of Dite		-	1	IVIHZ		
AD34	ENUD			9.4		DIIS		

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		44		
Number of Terminals per Side	ND		12		
Number of Terminals per Side	NE	10			
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.20	0.25	0.30	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2

Section Name	Update Description
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications Parameter DC12 (Table 23-4).
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).
	Updated Max value for BOR electrical characteristics Parameter BO10 (see Table 23-11).
	Swapped Min and Typ values for Program Memory Parameters D136 and D137 (Table 23-12).
	Updated Typ values for Internal RC Accuracy Parameter F20 and added Extended temperature range to table heading (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer Parameter SY20 and updated conditions, which now refers to Section 20.4 "Watchdog Timer (WDT)" and LPRC Parameter F21a (see Table 23-22).
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).
	Updated Min and Max values for 10-bit High-Speed Analog-to-Digital Module Parameters AD01 and AD11 (see Table 23-36).
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).