

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-9: INTERLEAVED PFC

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Program Memory" (DS70202) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.6 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 DEVICES

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

TABLE 4-30: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	—	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	_		PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			_	_	_	_	_	_	_	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50	IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40	0000
ADCPC3	0310	I	_	_	-	_	-			IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60	0000
ADCBUF0	0320								ADC Da	ata Buffer	0							xxxx
ADCBUF1	0322								ADC Da	ata Buffer	1							xxxx
ADCBUF2	0324								ADC Da	ata Buffer	2							xxxx
ADCBUF3	0326								ADC Da	ata Buffer	3							xxxx
ADCBUF4	0328								ADC Da	ata Buffer	4							xxxx
ADCBUF5	032A								ADC Da	ata Buffer	5							xxxx
ADCBUF6	032C								ADC Da	ata Buffer	6							xxxx
ADCBUF7	032E								ADC Da	ata Buffer	7							xxxx
ADCBUF8	0330								ADC Da	ata Buffer	8							xxxx
ADCBUF9	0332								ADC Da	ata Buffer	9							xxxx
ADCBUF10	0334								ADC Da	ita Buffer '	10							xxxx
ADCBUF11	0336								ADC Da	ita Buffer	11							xxxx
ADCBUF12	0338								ADC Da	ta Buffer	12							xxxx
ADCBUF13	033A								ADC Da	ta Buffer	13							xxxx

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.6 SOFTWARE STACK

In addition to its use as a Working register, the W15 register in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-48 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where, Operand 1 is always a Working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

NOTES:

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	SPI1EIP2	SPI1EIP1	SPI1EIP0		T3IP2	T3IP1	T3IP0				
bit 7		1					bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	U1RXIP<2:0>	: UART1 Rece	eiver Interrupt	Priority bits							
	111 = Interrup	pt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits										
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 										
	•										
	• 001 – Interrupt is Priority 1										
	001 = Interruption 000 = Inter	ot source is dis	abled								
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	. SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits										
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	T3IP<2:0>: Ti	imer3 Interrupt	Priority bits								
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 – Intorrur	at the Dute site of									
		pt is Priority 1									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	CNIP2	CNIP1	CNIP0	—	AC1IP2	AC1IP1	AC1IP0				
bit 15							bit 8				
	DAM 4	DAMO	DAM 0			DAMO	DAMO				
0-0	K/W-1 MI2C1IP2	R/W-U MI2C1IP1	R/W-U	0-0	R/W-1	R/W-U	R/W-U				
 bit 7	WIIZCTIFZ	WIZCTF1	WIIZCTIFU		3120 TIF 2	3120 TIF T	bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
hit 15	Unimplemen	ted: Read as '	٥'								
bit 14-12	CNIP<2:0>: (Change Notific:	• ation Interrupt	Priority bits							
51(11)2	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•	-									
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	AC1IP<2:0>:	AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits									
	 111 = Interrupt is Priority 7 (highest priority interrupt) 										
	•										
	001 = Interru	pt is Priority 1 pt source is dis	ahled								
bit 7		ted: Read as '	0'								
bit 6-4	MI2C1IP<2:0	MI2C1IP<2:0>: I2C1 Master Events Interrupt Prioritv bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	SI2C1IP<2:0	I2C1 Slave I	Events Interrup	ot Priority bits							
		pt is Priority 7	ingnest priorit	y interrupt)							
	•										
	• 001 - Interru	ot is Driority 1									
	001 = Interru	pt is Fhority 1 pt source is dis	abled								

8.1 CPU Clocking System

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Reserved	Reserved	xx	100	I
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
F							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8	Unimplemen U1CTSR<5:0 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • •	ted: Read as ' >: Assign UAR but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 tied to RP32	0' T1 Clear-to-S	end (U1CTS) t	to the Correspo	nding RPn Pin	bits
bit 7-6 bit 5-0	Unimplemen U1RXR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp	ted: Read as : Assign UART but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 but tied to RP32	0' 1 Receive (U' 5 4 2	IRX) to the Co	rresponding RF	Pn Pin bits	
		•					

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	_	_	P	CLKDIV<2:0> ⁽¹)
bit 7							bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			PTPE	R <15:8>					
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0		
			PTPE	R <7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	nown		

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 2	CAM: Center-Aligned Mode Enable bit ^(2,3)	
	1 = Center-Aligned mode is enabled	
	0 = Center-Aligned mode is disabled	

- bit 1 **XPRES:** External PWM Reset Control bit⁽⁴⁾
 - 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base (ITB) mode
 - 0 = External pins do not affect PWM time base
- bit 0 IUE: Immediate Update Enable bit
 - 1 = Updates to the active MDC/PDCx/SDCx registers are immediate
 - 0 = Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base
- Note 1: Software must clear the interrupt status here and the corresponding IFSx bit in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - **3:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMO	D CLSRC4 ^(2,3)	CLSRC3 ^(2,3)	CLSRC2(2,3)	CLSRC1 ^(2,3)	CLSRC0 ^(2,3)	CLPOL ⁽¹⁾	CLMOD
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSRC4	^(2,3) FLTSRC3 ^(2,3)	FLTSRC2 ^(2,3)	FLTSRC1 ^(2,3)	FLTSRC0 ^(2,3)	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	IFLTMOD: Inc	dependent Fau	It Mode Enable	e bit			
	1 = Independ	lent Fault mode	: Current-limit	input maps FLT	TDAT1 to PWM	xH output and	the Fault inp
	maps FL	TDAT0 to the P	WMxL output.	The CLDAT<1	:0> bits are not	used for overr	ide functions
	0 = Normal F	ault mode: Cu	Irrent-limit feat	ture maps CLE	DAT<1:0> bits t	to the PWMxH	I and PWMx
hit 1 1 1 0			Control Signo	FLIDAI<1.0>		and PVVIVIXL C	ouipuis. a)
DIL 14-10	11111 - Boo	Current-Limit	Control Signa	I Source Select	l IOI PWW # Ge	nerator bits -,-	,
	•	erveu					
	•						
	•						
	01000 = Rese	erved					
	00111 = Faul	t 8 + 7					
	00110 = Faul	t 6					
	00100 = Faul	t 5					
	00011 = Faul	t 4					
	00010 = Faul	t 3					
	00001 = Faul	t 2					
	00000 = Faul	t 1		(1)	,		
bit 9	CLPOL: Curre	ent-Limit Polari	ty for PWM Ge	enerator # bit("	,		
	1 = The selec 0 = The selec	ted current-lim	it source is act	ive-low ive-high			
bit 8	CLMOD: Curr	ent-Limit Mode	e Enable bit for	r PWM Genera	tor # bit		
	1 = Current-lir	mit function is e	enabled				
	0 = Current-lir	mit function is o	lisabled				
Note 1:	These bits should I	be changed on	ly when PTEN	= 0. Changing	the clock selec	tion during op	eration will
-	yield unpredictable	results.					, .
2:	vvnen Independent	t Fault mode is	enabled (IFLT	MOD = 1, and $NOD = 1$		a for Current-Li	imit mode
	Fault source to pre	vent Fault 1 fr	m disabling b	oth the PWMvI	and PWMxH c		to an unuse

DWAR FALL TOURDENT LINE CONTROL DECISTER

3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

21.5 JTAG Interface

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface will be provided in future revisions of the document.

21.6 In-Circuit Serial Programming

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of Digital Signal Controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.7 In-Circuit Debugger

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide simple debugging functionality through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS, when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	15 mA
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

			Standard	Operating Co	nditions: 3.0V	to 3.6V	
DC CHARA	CTERISTIC	S	(unless ot	herwise state	ed)		
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
_				Γ	$-40^{\circ}C \le IA \le +$	125°C for Extended	
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions			
Operating Current (IDD) ⁽²⁾							
DC20d	55	70	mA	-40°C			
DC20a	55	70	mA	+25°C	2.21/	10 MIPS	
DC20b	55	70	mA	+85°C	3.3V	See Note 2	
DC20c	55	70	mA	+125°C			
DC21d	68	85	mA	-40°C			
DC21a	68	85	mA	+25°C	2 2\/	16 MIPS	
DC21b	68	85	mA	+85°C	3.3V	See Note 2 and Note 3	
DC21c	68	85	mA	+125°C			
DC22d	78	95	mA	-40°C			
DC22a	78	95	mA	+25°C	2 2\/	20 MIPS	
DC22b	78	95	mA	+85°C	3.3V	See Note 2 and Note 3	
DC22c	78	95	mA	+125°C			
DC23d	88	110	mA	-40°C			
DC23a	88	110	mA	+25°C	3 3\/	30 MIPS	
DC23b	88	110	mA	+85°C	5.5v	See Note 2 and Note 3	
DC23c	88	110	mA	+125°C			
DC24d	98	120	mA	-40°C			
DC24a	98	120	mA	+25°C	3 3\/	40 MIPS	
DC24b	98	120	mA	+85°C	0.0V	See Note 2	
DC24c	98	120	mA	+125°C			
DC25d	128	160	mA	-40°C		40 MIPS	
DC25a	125	150	mA	+25°C	2 21/	See Note 2, except PWM is	
DC25b	121	150	mA	+85°C	0.0 V	operating at maximum speed	
DC25c	119	150	mA	+125°C		(PTCON2 = 0x0000)	
DC26d	115	140	mA	-40°C		40 MIPS	
DC26a	112	140	mA	+25°C	3 3/	See Note 2, except PWM is	
DC26b	110	140	mA	+85°C	3.37	operating at 1/2 speed	
DC26c	108	140	mA	+125°C		(PTCON2 = 0x0001)	

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while (1) statement
- JTAG disabled
- **3:** These parameters are characterized but not tested in manufacturing.

AC CHAF	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characte	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	ne:						
	4x Source Driver Pir RB0-RB2, RB5-RB1 RC2, RC9, RC10	—	10	25	ns	Refer to Figure 24-1 for test conditions		
	8x Source Driver Pir RC3-RC8, RC11-RC	—	8	20	ns			
16x Source Driver P RA4, RB3, RB4, RB			ins – RA3, 11-RB14	—	6	15	ns	
DO32 TIOF Port Output Fa		Port Output Fall Tim	e:					
	4x Source Driver Pir RB0-RB2, RB5-RB1 RC2, RC9, RC10	_	10	25	ns	Refer to Figure 24-1 for test conditions		
	8x Source Driver Pir RC3-RC8, RC11-RC	_	8	20	ns			
	16x Source Driver P RA4, RB3, RB4, RB	ins – RA3, 11-RB14	_	6	15	ns		
DI35	TINP	INTx Pin High or Lov	20	—		ns		
DI40	Trbp	CNx High or Low Tir	2	_		TCY		

TABLE 24-21: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical	Max	Doze Ratio	Units	Conditions		
MDC74a	80	105	1:2	mA			
MDC74f	65	105	1:64	mA	-40°C	3.3V	50 MIPS
MDC74g	65	105	1:128	mA			
MDC75a	81	105	1:2	mA			
MDC75f	65	105	1:64	mA	+25°C	3.3V	50 MIPS
MDC75g	65	105	1:128	mA			
MDC76a	81	105	1:2	mA			
MDC76f	65	105	1:64	mA	+85°C	3.3V	50 MIPS
MDC76g	65	105	1:128	mA]		

TABLE 26-4: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)⁽¹⁾

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

 Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG is disabled

Section Name	Update Description				
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).				
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications Parameter DC12 (Table 23-4).				
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).				
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).				
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).				
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).				
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).				
	Updated Max value for BOR electrical characteristics Parameter BO10 (see Table 23-11).				
	Swapped Min and Typ values for Program Memory Parameters D136 and D137 (Table 23-12).				
	Updated Typ values for Internal RC Accuracy Parameter F20 and added Extended temperature range to table heading (see Table 23-19).				
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer Parameter SY20 and updated conditions, which now refers to Section 20.4 "Watchdog Timer (WDT)" and LPRC Parameter F21a (see Table 23-22).				
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).				
	Updated Min and Max values for 10-bit High-Speed Analog-to-Digital Module Parameters AD01 and AD11 (see Table 23-36).				
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).				

NOTES: