

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

Refer to Section 21.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or Uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	_	_	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:									
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	, read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15-12	Unimplen	nented: Read as '0'							
	Unimplemented: Read as '0'								
bit 11-8									
	1111 = C	PU Interrupt Priority Level is	s 15						
	•								
	•								
	•		- 4						
		PU Interrupt Priority Level is							
		PU Interrupt Priority Level i	50						
bit 7	Unimplen	nented: Read as '0'							
bit 6-0	VECNUM	<6:0>: Vector Number of P	ending Interrupt bits						
	0111111	= Interrupt vector pending i	is Number 135						
	•								
	•								
	•								
	0000001	= Interrupt vector pending i	is Number 9						
	0000000	= Interrupt vector pending i	is Number 8						

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ROON	_	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	—		—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown			
bit 15	ROON: Refer	ence Oscillator	r Output Enab	ole bit						
				on the REFCL	.K0 pin ⁽²⁾					
		e oscillator outp		ł						
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit									
		e oscillator outp e oscillator outp								
bit 12	ROSEL: Reference Oscillator Source Select bit									
	1 = Oscillator	crystal is used	as the refere	nce clock						
	•	lock is used as								
bit 11-8	RODIV<3:0>: Reference Oscillator Divider bits ⁽¹⁾									
	1111 = Reference clock divided by 32,768									
	1110 = Reference clock divided by 16,384									
	1101 = Reference clock divided by 8,192									
	1100 = Reference clock divided by 4,096 1011 = Reference clock divided by 2,048									
	1010 = Reference clock divided by 2,040									
	1001 = Reference clock divided by 512									
	1000 = Reference clock divided by 256									
	0111 = Reference clock divided by 128									
	0110 = Reference clock divided by 64									
	0101 = Reference clock divided by 32 0100 = Reference clock divided by 16									
		ence clock divi	-							
		ence clock divi ence clock divi	-							
	000T = Velet									
	0000 = Refer									

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3									
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0		
_	—	—	—	—	CMPMD	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown			

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Analog Comparator Module Disable bit
	 Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit

1 = Reference clock generator module is disabled

- 0 = Reference clock generator module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit
Legend:	la h:t		L:4		antad hit waar	L == (0)	
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15-14	Unimploment	ted: Read as '	o'				
	-						
bit 13-8		-	3 External Clo	ck (T3CK) to th	ne Correspondi	ng RPn Pin bits	6
	111111 = Inp		_				
	100011 = Inp	ut tied to RP35					
	100011 = Inp 100010 = Inp	out tied to RP35 out tied to RP34	1				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP35 out tied to RP34 out tied to RP33	1 3				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP35 out tied to RP34	1 3				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP35 out tied to RP34 out tied to RP33	1 3				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP35 out tied to RP34 out tied to RP33	1 3				
	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP34 ut tied to RP34 ut tied to RP33 ut tied to RP32	1 3				
hit 7-6	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP32	4 3 2				
bit 7-6	100011 = Inp 100010 = Inp 100000 = Inp • • • • 00000 = Inpu Unimplemen	ut tied to RP35 out tied to RP34 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as '	4 3 2 0'	ole (T2CK) to th	oo Corroopondi	ng PDn Din hit	
bit 7-6 bit 5-0	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP35 out tied to RP33 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as ' : Assign Timer?	4 3 2 0'	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	t tied to RP35 out tied to RP32 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as ' : Assign Timer: out tied to Vss	1 3 2 0' 2 External Clo	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	5
	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	t tied to RP35 out tied to RP32 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as ' : Assign Timer out tied to Vss out tied to RP35	1 3 2 0' 2 External Clo	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	t tied to RP35 out tied to RP34 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as f t tied to Vss out tied to RP35 out tied to RP34	1 3 2 0' 2 External Clo 5 1	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inpu • • • • • • • • • • • • • • • • • • •	t tied to RP35 tut tied to RP34 tut tied to RP33 tut tied to RP32 t tied to RP32 t tied to RP0 ted: Read as f tut tied to Vss tut tied to RP35 tut tied to RP34 tut tied to RP33	1 3 2 0' 2 External Clo 5 1 3	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inpu • • • • • • • • • • • • • • • • • • •	t tied to RP35 out tied to RP34 out tied to RP33 out tied to RP32 t tied to RP0 ted: Read as f t tied to Vss out tied to RP35 out tied to RP34	1 3 2 0' 2 External Clo 5 1 3	ck (T2CK) to th	ie Correspondi	ng RPn Pin bits	5
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inpu • • • • • • • • • • • • • • • • • • •	t tied to RP35 tut tied to RP34 tut tied to RP33 tut tied to RP32 t tied to RP32 t tied to RP0 ted: Read as f tut tied to Vss tut tied to RP35 tut tied to RP34 tut tied to RP33	1 3 2 0' 2 External Clo 5 1 3	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inpu • • • • • • • • • • • • • • • • • • •	t tied to RP35 tut tied to RP34 tut tied to RP33 tut tied to RP32 t tied to RP32 t tied to RP0 ted: Read as f tut tied to Vss tut tied to RP35 tut tied to RP34 tut tied to RP33	1 3 2 0' 2 External Clo 5 1 3	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inpu • • • • • • • • • • • • • • • • • • •	t tied to RP35 ut tied to RP32 ut tied to RP33 ut tied to RP33 t tied to RP34 t tied to RP34 t tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP33 ut tied to RP33	1 3 2 0' 2 External Clo 5 1 3	ck (T2CK) to th	ne Correspondi	ng RPn Pin bits	3

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	0-0	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 7		T LIZI(1 21214	T ETZI(0	TLIZI	I LIZI(I	bit (
Legend:		\A/ \A/ \	1.14				
R = Readab		W = Writable			nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15-14	Unimplomon	ted: Read as '	0'				
	-						
bit 13-8		•	Fault Input 3 (FLI3) to the Co	orresponding R	Pn Pin bits	
	111111 = Inp	ut tied to Vss					
			_				
		ut tied to RP3					
	100010 = Inp	ut tied to RP34	1				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp	ut tied to RP34 ut tied to RP33	4 3				
	100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP34 ut tied to RP33 ut tied to RP32	4 3				
	100010 = Inp 100001 = Inp 100000 = Inp • • • 00000 = Inpu	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0	4 3 2				
bit 7-6	100010 = Inp 100001 = Inp 100000 = Inp • • • • 00000 = Inpu Unimplement	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '	4 3 2 0'				
bit 7-6 bit 5-0	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM	4 3 2 0'	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss	4 3 2 0' Fault Input 2 (FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP35	4 3 2 0' Fault Input 2 (5	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	orresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to Vss ut tied to RP34 ut tied to RP34 ut tied to RP34	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	
	100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP34 ut tied to RP32 ut tied to RP32 t tied to RP0 ted: Read as ' Assign PWM I ut tied to RP34 ut tied to RP32 ut tied to RP32 ut tied to RP32	4 3 2 0' Fault Input 2 (5 4 3	FLT2) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-10: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 7							bit
Legend:					6 11 K		
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			- 1				
bit 15-14	=	ted: Read as '					
bit 13-8)>: Assign PW g RPn Pin bits	M Master Time	e Base Externa	al Synchronizat	ion Signal to th	е
	1111111 = Inp	-					
		ut tied to RP35	5				
		ut tied to RP34					
	100001 - Inn						
		ut tied to RP33					
		ut tied to RP33 ut tied to RP32					
	100000 = Inp • •	ut tied to RP32					
		ut tied to RP32					
bit 7-6	100000 = Inp • • 00000 = Inpu	ut tied to RP32	2				
bit 7-6 bit 5-0	100000 = Inp • • 00000 = Inpu Unimplemen	ut tied to RP32 t tied to RP0 ted: Read as '(2 0'	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplemen FLT8R<5:0>: 111111 = Inp	ut tied to RP32 t tied to RP0 ted: Read as 'd Assign PWM F ut tied to Vss	2 ₀ ' Fault Input 8 (I	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplemen FLT8R<5:0>: 111111 = Inp 100011 = Inp	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35	2 ₀ ' Fault Input 8 (I	⁻ LT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplement FLT8R<5:0>: 11111 = Inp 100011 = Inp 100010 = Inp	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34	2 0' Fault Input 8 (I 5	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34	2 0' Fault Input 8 (I 5 4 3	⁻ LT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '(Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP33 ut tied to RP33 ut tied to RP32	2 0' Fault Input 8 (I 5 4 3	⁻ LT8) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN	SPRE2 ⁽²⁾	SPRE1 ⁽²⁾	SPRE0 ⁽²⁾	PPRE1 ⁽²⁾	PPRE0 ⁽²⁾
bit 7	CI	MOTEN	SI KLZ.	SFILL IV	SINLO		bit
51(7							
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	ʻ0'				
bit 12	-			er modes only)			
		PI clock is dis PI clock is ena	abled; pin func abled	tions as I/O			
bit 11	DISSDO: Dis	able SDOx Pir	n bit				
		is not used by is controlled by		unctions as I/C)		
oit 10	MODE16: Wo	ord/Byte Comn	nunication Sele	ect bit			
			-wide (16 bits)				
		cation is byte-					
oit 9		ata Input Sam	ple Phase bit				
		a sampled at e	nd of data outp hiddle of data o				
	Slave mode:	·		n Slave mode.			
bit 8	CKE: SPIx CI	ock Edge Sele	ect bit ⁽¹⁾				
						lle clock state (
ait 7			bit (Slave mo		OCK STATE TO ACTI	ve clock state (see bit 6)
bit 7		select Enable s used for Slav					
				ntrolled by port	function		
bit 6	CKP: Clock F	Polarity Select	bit				
				ve state is a lov e state is a higl			
oit 5	MSTEN: Mas	ter Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
	he CKE bit is not FRMEN = 1).	used in the Fr	amed SPI mod	des. Program t	his bit to '0' for	the Framed SF	Pl modes
-	o not set both pri	mary and seco	ondary prescal	ers to a value	of 1:1.		
	bio bit must be al	-			-		

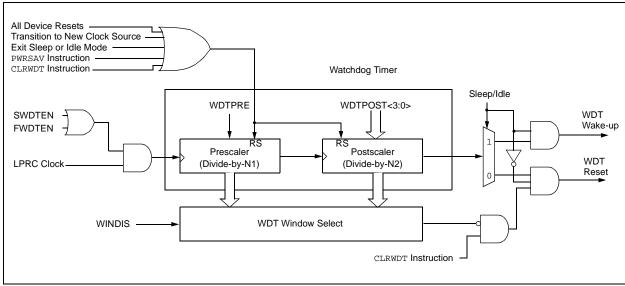
REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

- **3:** This bit must be cleared when FRMEN = 1.

NOTES:

21.4 Watchdog Timer (WDT)

For the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.


21.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 21-2: WDT BLOCK DIAGRAM

21.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

21.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

DC CHA	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic Min Typ ⁽¹⁾ Max Units					Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		I/O Pins with OSC1	Vss	—	0.2 Vdd	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss		0.8	V	SMBus enabled
	Viн	Input High Voltage					
DI20 DI21		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd		Vdd 5.5	V V	
DI28 DI29		SDA1, SCL1 SDA1, SCL1	0.7 Vdd 2.1		5.5 5.5	V V	SMBus disabled SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			_	250	—	μΑ	VDD = 3.3V, VPIN = VSS
DI50	lıL.	Input Leakage Current ^(2,3,4) I/O Pins with: 4x Driver Pins - RA0-RA2, RB0-RB2, RB5-RB10, RB15, RC1, RC2, RC9, RC10	_		±2	μΑ	VSS \leq VPIN \leq VDD, Pin at high-impedance
		8x Driver Pins - RC0, RC3-RC8, RC11-RC13	_	_	±4	μA	$\label{eq:VSS} \begin{array}{l} \forall VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance} \end{array}$
		16x Driver Pins - RA3, RA4, RB3, RB4, RB11-RB14	_	_	±8	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance} \end{array}$
DI55		MCLR	—	—	±2	μΑ	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$
DI56		OSC1	—	—	±2	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

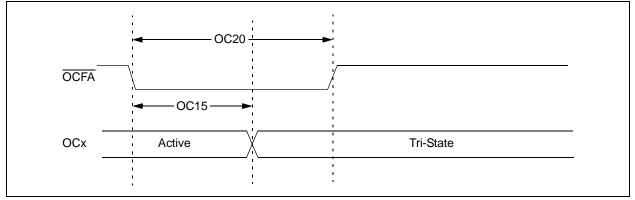
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.SymbolCharacteristicMinTyp^{(1)}MaxUnits					Conditions			
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V-tolerant designated pins	
DI60c	DI60c $\sum \text{IICT}$ Total Input Injection Current (sum of all I/O and control pins) $-20^{(9)}$ — $+20^{(9)}$ mA Absolute instantane sum of all ± input injection currents fre all I/O pins					injection currents from		


TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

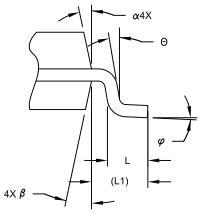
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

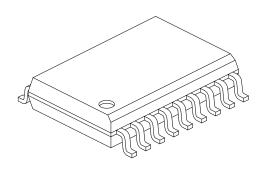
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS


AC CHAI	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			35°C for Industrial	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	


Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	N	/ILLIMETER	S	
Dimension Lin	nits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overall Length	D		11.55 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

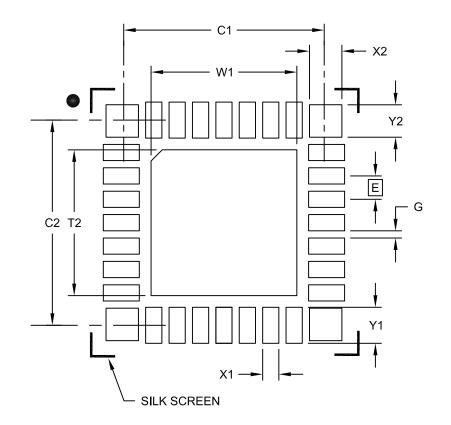
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

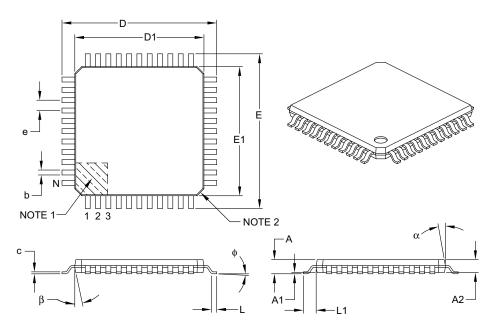
28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER	S	
Dimensior	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W1			4.05
Optional Center Pad Length	T2			4.05
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.00
Corner Pad Width (X4)	X2			0.90
Corner Pad Length (X4)	Y2			0.90
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B