

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

											0102/10							
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_			_	_	_		_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	—	_	INT2IF	_	_	_	_	_	_	_	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	_		—		_	PSEMIF	—	—	_	—	—	_	_			0000
IFS4	008C	—	_		_			_	—	—		—	_			U1EIF		0000
IFS5	008E	PWM2IF	PWM1IF		-			_	-	_		_	-					0000
IFS6	0090	ADCP1IF	ADCP0IF		-			_	-	_		_	-				PWM3IF	0000
IFS7	0092	—	—	-	—	-	-	—	—	—	-	_	—	—	-	ADCP3IF	ADCP2IF	0000
IEC0	0094	—	—	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	—	—	INT2IE	—	_	_	—	—	—	_	—	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC3	009A	—	—	_	—	_	_	PSEMIE	—	—	_	—	—	_	_	_	_	0000
IEC4	009C	—	—	_	—	_		—	—	—	-	—	—	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	_	—	_		—	—	—	-	—	—	_	_	—	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	—	_		—	—	—	-	—	—	_	_	_	PWM3IE	0000
IEC7	00A2	—	—	_	—	_	_	—		—	-	—	—	_	_	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		—	_	_	_					ADIP2	ADIP1	ADIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0	_				—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE			_	_	_				—	_	_	_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	—	—	—	—	—	—	—	—	—	INT2IP2	INT2IP1	INT2IP0	—	—	—	—	0040
IPC14	00C0	—	—	—	—	—	—	—	—	—	PSEMIP2	PSEMIP1	PSEMIP0	—	—	—	—	0040
IPC16	00C4	—	—	—	—	—	—	—	—	—	U1EIP2	U1EIP1	U1EIP0	—	—	—	—	0040
IPC23	00D2	—	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0			—		—	—	—	—	4400
IPC24	00D4	—	—	—	—	_		—	—	—	-	—	—	—	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0			—		—	—	—	—	4400
IPC28	00DC	—	—	_	—	—	-	—	—	—	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0044
INTTREG	00E0	—	—	—	—	ILR3	ILR2	ILR1	ILR0	—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-8. INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33E.116GS402/404 DEVICES ONLY

Legend: x = unknown value on Reset, ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	—	_	—	—	—	_	_	_	—	—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	—	—	INT2IF	_	_	—	—	—	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	_	_	_	_	_	PSEMIF	_	_	_	_	_	_	_	_	_	0000
IFS4	008C	—	_	_	_	_	_	_	_	_	_	_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	_	_	_	_	_	PWM4IF	PWM3IF	0000
IFS7	0092	—	_	_	_	_	_	_	_	_	_	_	ADCP6IF	_	_	ADCP3IF	ADCP2IF	0000
IEC0	0094	—	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	—	_	INT2IE	_	—		—	—	_	—	—	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_		—	—		PSEMIE	_	_	—	—	_	_	_	_	_	0000
IEC4	009C	_	_		—	—		_	_	_	—	—	_	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE		—	—		_	_	_	—	—	_	_	_	_	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE		—	—		AC4IE	AC3IE	AC2IE	—	—	_	_	_	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_		—	—		_	_	_	—	—	ADCP6IE	_	_	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_		—	—		_	_	-	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	—	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_		—	—		_	_	_	—	—	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	_		—	—		_	_	_	INT2IP2	INT2IP1	INT2IP0	_	_	_	_	0040
IPC14	00C0	_	_			_		_	_	—	PSEMIP2	PSEMIP1	PSEMIP0	_	_	—	—	0040
IPC16	00C4	—	—	_	—	_	—	—	—	—	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0040
IPC23	00D2	—	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	—	—	_	—	—	4400
IPC24	00D4	—	—	_	—	_	—	—	—	—	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	0044
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0	—		_	_	_	—	—	_	_	_	_	_	4000
IPC26	00D8	—	—	_	—	_	—	—	—	—	AC4IP2	AC4IP1	AC4IP0	—	AC3IP2	AC3IP1	AC3IP0	0044
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0		—	_	—	—	—	_	—	4400
IPC28	00DC	—	—	—	_	_	—	—	—	-	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0044
IPC29	00DE	—	—	—	_	_	—	—	—	-	—	_	—	—	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG	00E0	_	_		_	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

NOTES:

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

- time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
- 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- 5: When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

Symbol	Parameter	Value
VPOR	POR Threshold	1.8V nominal
TPOR	POR Extension Time	30 µs maximum
VBOR	BOR Threshold	2.5V nominal
TBOR	BOR Extension Time	100 µs maximum
TPWRT	Programmable Power-up Time Delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

TABLE 6-2: OSCILLATOR DELAY

Note:	When the device exits the Reset
	condition (begins normal operation), the
	device operating parameters (voltage,
	frequency, temperature, etc.) must be
	within their operating ranges; otherwise,
	the device may not function correctly.
	The user application must ensure that
	the delay between the time power is first
	applied, and the time SYSRST becomes
	inactive, is long enough to get all
	operating parameters within specification.

REGISTER 7-14: IEC	C3: INTERRUPT ENABLE	CONTROL REGISTER 3
--------------------	----------------------	---------------------------

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	—	_	_	—	—	PSEMIE	—
bit 15			·	•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7	-			•			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-10	Unimplemen	ted: Read as '	0'				
bit 9	PSEMIE: PW	M Special Ever	nt Match Inter	rupt Enable bit	t		
	1 = Interrupt i	equest enable	d				

- 0 = Interrupt request not enabled
- bit 8-0 Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIE: UART1 Error Interrupt Enable bit

1 = Interrupt request enabled

- 0 = Interrupt request not enabled
- bit 0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—		—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4	ADCP6IE: AI	DC Pair 6 Conv	ersion Done I	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	oled					
	0 = Interrupt	request is not e	enabled					
bit 3	ADCP5IE: AI	DC Pair 5 Conv	ersion Done I	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	bled					
hit 2		DC Poir 4 Con		ntorrupt Enable	o hit			
DIL 2	1 - Interrupt	DC Fail 4 Conv		menupi Enable	e bit			
	0 = Interrupt	request is enac	enabled					
bit 1	ADCP3IE: AI	DC Pair 3 Conv	ersion Done I	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	oled	•				
	0 = Interrupt	request is not e	enabled					
bit 0	ADCP2IE: AI	DC Pair 2 Conv	version Done I	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	oled					
	0 = Interrupt	request is not e	enabled					

REGISTER 7-18: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_		—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7	·				•		bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT1IP<2:0>:	External Interr	upt 1 Priority	bits			
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	•						
	001 – Interrur	nt is Priority 1					

REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—		—	—	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	INT2IP2	INT2IP1	INT2IP0			—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority	bits				
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	•							
	001 = Interrup	ot is Priority 1						
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled					

10.6 Peripheral Pin Select

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 30 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

11.0 **TIMER1**

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- Optionally, the external clock input (T1CK) can be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

FABLE 11-1 :	TIMER MODE SETTINGS
---------------------	---------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

				•	•		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15							bit 8
							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timerx	On bit					
	<u>When $132 = 1$</u> 1 - Starts 32	L (in 32-Bit Tim	<u>er mode):</u> v timer pair				
	0 = Stops 32-	bit TMRx:TMR	y timer pair				
	When T32 = 0) (in 16-Bit Tim	er mode):				
	1 = Starts 16-	bit timer					
	0 = Stops 16-	bit timer					
bit 14	Unimplemen	ted: Read as ')' • • • • •				
bit 13	TSIDL: Timer	x Stop in Idle N	lode bit				
	1 = Discontinues 0 = Continues	ues timer opera	ation when dev in in Idle mode	VICE Enters Idle	e mode		
bit 12-7		ted: Read as '	n' in falo moac				
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit			
	When TCS =	1:					
	This bit is igno	ored.					
	When TCS =	<u>0:</u>					
	1 = Gated tim	e accumulation	n is enabled				
hit 5-1		• Timery Input	Clock Prescal	a Salact hits			
bit 0 4	11 = 1:256 pr	escale value	Clock Treseak				
	10 = 1:64 pre	scale value					
	01 = 1:8 prescale value						
	00 = 1:1 prescale value						
bit 3	T32: 32-Bit Timerx Mode Select bit						
	1 = TMRx and TMRy form a 32-bit timer 0 = TMRx and TMRy form a separate 16-bit timer						
bit 2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timerx (Clock Source S	Select bit				
-	1 = External c	clock from TxCl	≺ pin				
	0 = Internal cl	ock (Fosc/2)					
bit 0	Unimplemen	ted: Read as '	כ'				

REGISTER 12-1: TxCON: TIMERx CONTROL REGISTER (x = 2)

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates a Special Event Trigger trigger on every sixteenth compare match event

- •
- •

0001 = 1:2 Postscaler generates a Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

23.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions				
Power-Down	Current (IPD) ⁽	2,4)					
DC60d	125	500	μΑ	-40°C			
DC60a	135	500	μΑ	+25°C	2 2\/	Rasa Rower Down Current	
DC60b	235	500	μA	+85°C	3.37	base Fower-Down Current	
DC60c	565	950	μΑ	+125°C			
DC61d	40	50	μA	-40°C			
DC61a	40	50	μA	+25°C	2 21/	Matchdog Timor Current: Alwot(3)	
DC61b	40	50	μΑ	+85°C	3.3V		
DC61c	80	90	μΑ	+125°C			

TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

DC CHARACTERISTICS			Stand Opera	lard Oper ating temp	ating Condit erature: -40° -40°0	t ions (s C ≤ Ta : C ≤ Ta :	see Note 2): 3.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
CM10	VIOFF	Input Offset Voltage	-58	+14/-40	66	mV	
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD - 1.5	V	
CM12	VGAIN	Open Loop Gain ⁽¹⁾	90	—	—	db	
CM13	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	70	—	—	db	
CM14	TRESP	Large Signal Response	21	30	49	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.

TABLE 24-42: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

AC and DC CHARACTERISTICS		Standar Operatir	d Opera ng tempe	ting Condition rature: -40°C -40°C	ons (seo ≤ Ta ≤ - ≤ Ta ≤ +	e Note 2): 3.0V to 3.6V +85°C for Industrial -125°C for Extended	
Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0		AVDD - 1.6	V	
DA08	INTREF	Internal Voltage Reference ⁽¹⁾	1.25	1.32	1.41	V	
DA02	CVRES	Resolution		10		Bits	
DA03	INL	Integral Nonlinearity Error	-7	-1	+7	LSB	AVDD = 3.3V, DACREF = (AVDD/2)V
DA04	DNL	Differential Nonlinearity Error	-5	-0.5	+5	LSB	
DA05	EOFF	Offset Error	0.4	-0.8	2.6	%	
DA06	EG	Gain Error	0.4	-1.8	5.2	%	
DA07	TSET	Settling Time ⁽¹⁾	711	1551	2100	nsec	Measured when range = 1 (high range), and CMREF<9:0> transitions from 0x1FF to 0x300.

TABLE 24-43: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

		MILLIM	ETERS	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Revision C and D (March 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of PGCx/EMUCx and PGDx/EMUDx (where x = 1, 2, or 3) to PGECx and PGEDx
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

Other major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Digital	Added "Application Examples" to list of features
	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Added ACMP1-ACMP4 pin names and Peripheral Pin Select capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for ADCON in Table 4-25.
	Removed reference to dsPIC33FJ06GS102 devices in the PMD Register Map and updated bit definitions for PMD1 and PMD6, and removed PMD7 (see Table 4-43).
	Added a new PMD Register Map, which references dsPIC33FJ06GS102 devices (see Table 4-44).
	Updated RAM stack address and SPLIM values in the third paragraph of Section 4.2.6 "Software Stack"
	Removed Section 4.2.7 "Data Ram Protection Feature".
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
Section 24.0 "Electrical	Updated the Absolute Maximum Ratings.
Characteristics"	Updated the Operating MIPS vs. Voltage (see Table 24-1).
	Updated Parameter DC10 and Note 4, and removed Parameter DC18 from the DC Temperature and Voltage Specifications (see Table 24-4).
	Updated Note 2 in the IDD Operating Current specification (see Table 24-5).
	Updated all Typical values and Note 2 in the IIDLE Operating Current specification (see Table 24-6).
	Updated Typical values for Parameters DC60d, DC60a, DC60b, and DC60c, and Note 2 in the IPD Operating Current specification (see Table 24-7).
	Added all Typical values and Note 2 in the IDOZE Operating Current specification (see Table 24-8).
	Updated Parameters DI19 and DI50, added Parameters DI128, DI129, DI60a, DI60b, and DI60c, and removed Parameter DI57 in the I/O Pin Input Specifications (see Table 24-9).
	Revised all I/O Pinout Output Specifications (see Table 24-10).
	Added Notes 2 and 3 to the BOR Electrical Characteristics (see Table 24- 11).
	Added Note 1 to Internal Voltage Regulator Specifications (see Table 24-13).
	Updated the External Clock Timing diagram (see Figure 24-2).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 24-17).
	Removed Note 2 from the Internal FRC Accuracy (see Table 24-19).
	Updated Parameters DO31 and DO32 in the I/O Timing Requirements (see Table 24-21).
	Updated the External Clock Timing Requirements for Timer1, Timer2, and Timer3 (see Table 24-23, Table 24-24, and Table 24-25, respectively).
	Updated Parameters OC15 and OC20 in the Simple OC/PWM Mode Timing Requirements (see Table 24-28).
	Revised all SPIx Module Timing Characteristics diagrams and all Timing Requirements (see Figure 24-11 through Figure 24-18 and Table 24-30 through Table 24-37, respectively).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 24-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 24-41).
	Added Note 2 to the Comparator Module Specifications (see Table 24-42).
	Added Parameter DA08 and Note 2 in the DAC Module Specifications (see Table 24-43).
	Updated Parameter DA16 and Note 2 in the DAC Output Buffer DC Specifications (see Table 24-44).

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)