

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504t-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	—	—	—	_	—	—	—	3F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	003F
RPINR2	0684	_	_	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0	_	_	—	—	_		_	_	0000
RPINR3	0686	_	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR11	0696		—	_	_	-		—	_		_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR18	06A4	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	003F
RPINR20	06A8	_	_	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	_	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_	SS1R5	SS1R54	SS1R3	SS1R2	SS1R1	SS1R0	0000
RPINR29	06BA	_	_	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	_	_	_	_	_	_	_	_	3F00
RPINR30	06BC	_	_	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	_	_	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	3F3F
RPINR31	06BE	_	_	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0	_	_	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	3F3F
RPINR32	06C0	_	_	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0	_	_	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0	3F3F
RPINR33	06C2	_	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0	_		FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0	3F3F
RPINR34	06C4	_	_	_	_	_		_	_	_	_	SYNCI2R5	SYNCI2R4	SYNCI2R3	SYNCI2R2	SYNCI2R1	SYNCI2R0	3F3F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	—	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0		—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	—	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	—	_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	—	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR16	06F0	—	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	-	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	-	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NEOIOTEN O					LOIOIEN				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	_	—	—		
bit 15							bit 8		
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
			NVMK	EY<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$					

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Nonvolatile Memory Key bits (write-only)

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IF	PWM1IF	—	_		_	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	_	—			—		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$				
bit 15	PWM2IF: PW	/M2 Interrupt F	lag Status bit					
	1 = Interrupt i	request has occ	curred					
	0 = Interrupt i	request has not	occurred					
bit 14	PWM1IF: PW	/M1 Interrupt F	lag Status bit					
	1 = Interrupt i	request has occ	curred					
	0 = Interrupt i	request has not	occurred					
bit 13-0	Unimplemen	ted: Read as '	0'					

REGISTER 7-9: IFS5: INTERRUPT FLAG STATUS REGISTER 5

11.0	11.0	11.0	11.0		11.0	11.0	11.0	
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
			—			—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented						l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-5	bit 15-5 Unimplemented: Read as '0'							
bit 4	ADCP6IF: AD	DC Pair 6 Conv	ersion Done Ir	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					
bit 3	ADCP5IF: AD	DC Pair 5 Conv	ersion Done Ir	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					
bit 2	ADCP4IF: AD	DC Pair 4 Conv	ersion Done Ir	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has occ	curred					
	0 = Interrupt r	equest has not	occurred					
bit 1 ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit								
	1 = Interrupt r	equest has occ	curred					
		request has not						
U JIQ	ADCP2IF: AL	DC Pair 2 Conv	ersion Done li	nterrupt Flag S	Status bit			
	\perp = Interrupt r	equest has occ	curred					
		Equest has hot	occurreu					

REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7

REGISTER 8	-4: OSCT	UN: FRC OS	CILLATOR T	UNING REG	ISTER ⁽¹⁾		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		—	—		—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN	<5:0> (2)		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽²⁾				
011111 = Center frequency + 11.6% (8.2268 MHz) 011110 = Center frequency + 11.2% (8.1992 MHz)							
	•	1		,			

- Note 1: This register is reset only on a Power-on Reset (POR).
 - 2: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_			—	—	OC2MD	OC1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	IC2MD: Input	Capture 2 Mod	dule Disable bi	t			
	1 = Input Cap	ture 2 module	is disabled				
		ture 2 module	is enabled				
DIT 8	IC1MD: Input	Capture 1 Mod	ule Disable bi	t			
	$\perp = $ Input Cap 0 = Input Cap	ture 1 module	is disabled				
bit 7-2	Unimplemen	ted: Read as ')'				
bit 1	OC2MD: Outr	out Compare 2	Module Disabl	le bit			
	1 = Output Co	ompare 2 modu	le is disabled				
	0 = Output Co	ompare 2 modu	le is enabled				
bit 0	OC1MD: Outp	out Compare 1	Module Disabl	le bit			
	1 = Output Co	ompare 1 modu	le is disabled				
	0 = Output Co	ompare 1 modu	ile is enabled				

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11	PWM4MD: P	WM Generator	4 Module Disa	ıble bit			
	1 = PWM Ger	nerator 4 modu	le is disabled				
	0 = PWM Ger	nerator 4 modu	le is enabled				
bit 10	PWM3MD: P	WM Generator	3 Module Disa	ible bit			
	1 = PWM Ger	nerator 3 modu	le is disabled				
hit 9		MM Generator	2 Module Disa	ble hit			
bit 5	1 – PWM Ger	nerator 2 modu	le is disabled				
	0 = PWM Ger	nerator 2 modu	le is enabled				
bit 8	PWM1MD: P	WM Generator	1 Module Disa	ıble bit			
	1 = PWM Ger	nerator 1 modu	le is disabled				
	0 = PWM Ger	nerator 1 modu	le is enabled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	_		—		
bit 7							bit 0	
r								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	FLT1R<5:0>:	Assign PWM I	Fault Input 1 (FLT1) to the C	orresponding R	Pn Pin bits		
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP35	5					
	$100010 = \ln p$	but fied to RP34	+ >					
	100001 = Input tied to RP33							
	•		-					
	•							
	•							
	00000 = Inpu	It tied to RP0						
bit 7-0	Unimplemen	ted: Read as '	0'					
	-							

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	—	—			—
bit 15		•				•	bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—		TCS ⁽²⁾	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 TON: Timery On bit ⁽²⁾ 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery							
h :+ 4 4	0 = Stops 16-bit Timery						
DIT 14	Unimplemented: Kead as '0'						
DIL 13	 1 SIDL: Timery Stop in Idle Mode bit¹ 1 = Discontinues timer operation when device enters Idle mode 0 = Continues timer operation in Idle mode 						
bit 12-7	Unimplemen	ted: Read as '	כי				
bit 6	Unimplemented: Read as '0' TGATE: Timery Gated Time Accumulation Enable bit ⁽²⁾ When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled						
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽²)		
	11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value						
bit 3-2	Unimplemented: Read as '0'						
bit 1	TCS: Timery Clock Source Select bit ⁽²⁾ 1 = External clock from TxCK pin 0 = Internal clock (Fosc/2)						
bit 0	Unimplemen	ted: Read as '	כי				
Note 1: Who	en 32-bit timer	operation is en	abled (T32 = :	1) in the Time	rx Control regist	er (TxCON<3>)), the TSIDL

REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user

TABLE 14-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	Refer to "Output Compare" (DS70209)
	in the "dsPIC33F/PIC24H Family
	Reference Manual" for OCxR and OCxRS
	register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
111	PWM with Fault Protection	'0', if OCxR is zero	OCFA falling edge for OC1 to OC4
		'1', if OCxR is non-zero	
110	PWM without Fault Protection	'0', if OCxR is zero	No interrupt
		'1', if OCxR is non-zero	
101	Continuous Pulse	0	OCx falling edge
100	Delayed One-Shot	0	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
010	Active-High One-Shot	1	OCx falling edge
001	Active-Low One-Shot	0	OCx rising edge
000	Module Disabled	Controlled by GPIO register	

FIGURE 14-2: OUTPUT COMPARE OPERATION

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	_		P	CLKDIV<2:0> ⁽¹	1)
bit 7							bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is				'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

REGISTER 15-9:	PHASEX: PWMX PRIMARY PHASE-SHIFT REGISTER ^(1,2)	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is so		'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			

bit 15-0 PHASEx<15:0>: PWM Phase-Shift Value or Independent Time Base Period for this PWM Generator bits

- **Note 1:** If PWMCONx<ITB> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Independent Time Base period value for PWMxL only
 - The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.

NOTES:

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions						
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5		
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V-tolerant designated pins		
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT		

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 24-17: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		·	Device S	Supply		•		
AD01	AVdd	Module VDD Supply	—	—	_	—	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4	
AD02	AVss	Module Vss Supply	_	—		_	AVss is internally connected to Vss	
		•	Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V		
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V		
AD12	IAD	Operating Current	_	8	_	mA		
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100Ω	
AD17	Rin	Recommended Impedance Of Analog Voltage Source	—	—	100	Ω		
		DC Ac	curacy	@ 1.5 Msp	S			
AD20A	Nr	Resolution		10 Data	Bits			
AD21A	INL	Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb		
AD22A	DNL	Differential Nonlinearity	-0.9	±0.6	+0.9	LSb		
AD23A	Gerr	Gain Error	13	15	22	LSb		
AD24A	EOFF	Offset Error	6	7	8	LSb		
AD25A		Monotonicity ⁽¹⁾			—	—	Guaranteed	
	1	DC Ac	curacy	@ 1.7 Msp	S			
AD20B	Nr	Resolution		10 Data	Bits	-		
AD21B	INL	Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb		
AD22B	DNL	Differential Nonlinearity	-1.0	±1.0	+1.5	LSb		
AD23B	Gerr	Gain Error	13	15	22	LSb		
AD24B	EOFF	Offset Error	6	7	8	LSb		
AD25B		Monotonicity ⁽¹⁾				—	Guaranteed	
		DC Ac	curacy	@ 2.0 Msp	S			
AD20C	Nr	Resolution		10 Data	Bits			
AD21C	INL	Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb		
AD22C	DNL	Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb		
AD23C	Gerr	Gain Error	14	16	23	LSb		
AD24C	EOFF	Offset Error	6	7	8	LSb	-	
AD25C	—	Monotonicity		<u> </u>	—	—	Guaranteed	
	TUD	Dyna	amic Pe	rtormance				
AD30		Iotal Harmonic Distortion	—	-/3		dB		
AD31	SINAD	Signal to ivoise and Distortion		58 70	_	dB		
AD32	SFUK	Spurious Free Dynamic Range		-13				
AD33		Effective Number of Dite		-	1	IVIHZ		
AD34	ENUD			9.4		DIIS		

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W1			4.05	
Optional Center Pad Length	T2			4.05	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.00	
Corner Pad Width (X4)	X2			0.90	
Corner Pad Length (X4)	Y2			0.90	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B