

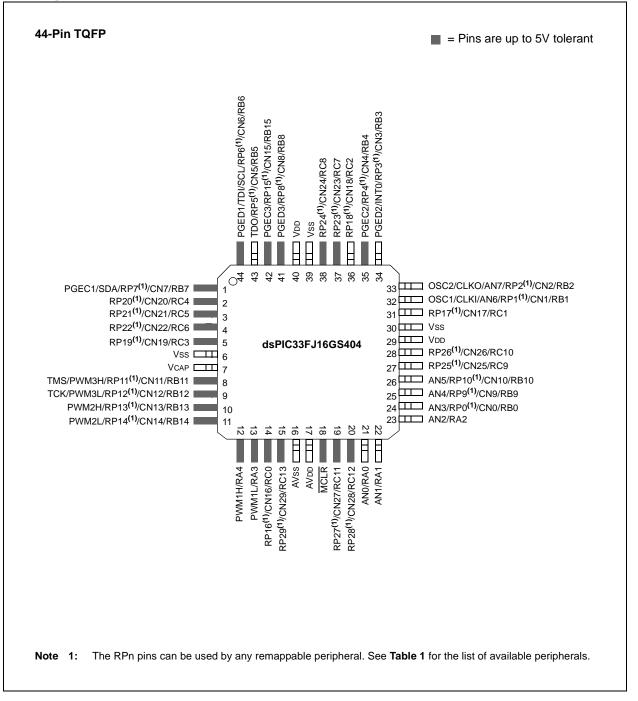
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504t-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

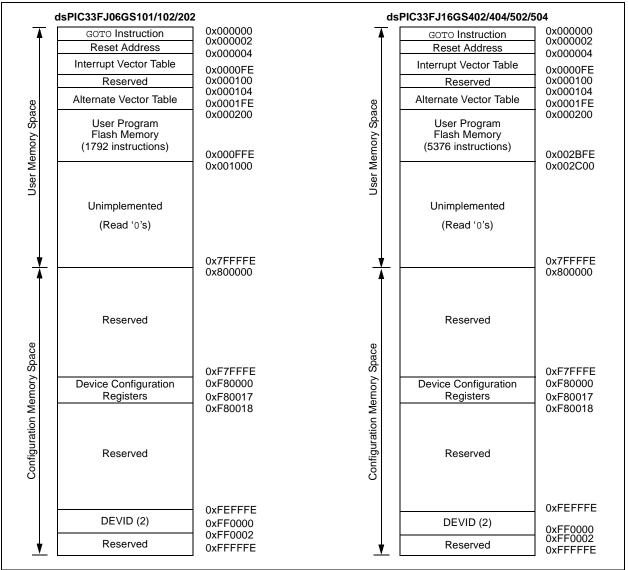
Note:	To access the documents listed below, browse to the documentation section of the dsPIC33FJ16GS504 product page of the Microchip web site (www.microchip.com).
	In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70197)
- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- "I/O Ports" (DS70193)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70005157)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "CodeGuard™ Security (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "Interrupts (Part IV)" (DS70300)
- "Oscillator (Part IV)" (DS70307)
- "High- Speed PWM Module" (DS70000323)
- "High-Speed 10-Bit ADC" (DS70000321)
- "High-Speed Analog Comparator" (DS70296)
- "Oscillator (Part VI)" (DS70644)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Program Memory" (DS70202) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.6 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000							Working Regi	ster 0									0000
WREG1	0002							Working Regi	ster 1									0000
WREG2	0004							Working Regi	ster 2									0000
WREG3	0006							Working Regi	ster 3									0000
WREG4	8000							Working Regi	ster 4									0000
WREG5	000A							Working Regi	ster 5									0000
WREG6	000C							Working Regi	ster 6									0000
WREG7	000E							Working Regi	ster 7									0000
WREG8	0010							Working Regi	ster 8									0000
WREG9	0012							Working Regi	ster 9									0000
WREG10	0014							Working Regis	ter 10									0000
WREG11	0016							Working Regis	ster 11									0000
WREG12	0018							Working Regis	ter 12									0000
WREG13	001A							Working Regis	ter 13									0000
WREG14	001C							Working Regis	ter 14									0000
WREG15	001E							Working Regis	ter 15									0800
SPLIM	0020		Stack Pointer Limit Register					xxxx										
ACCAL	0022		ACCAL					xxxx										
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	AU				xxxx
ACCBL	0028		ACCBL x					xxxx										
ACCBH	002A					-		ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCE	BU				XXXX
PCL	002E						Program	Counter Low	Word Regist	er								0000
PCH	0030	_	_		—	_	—	_	_			Program	Counter H	igh Byte I	Register			0000
TBLPAG	0032	_		_	_	_	_	_	_			Table Pa	ge Address	8 Pointer	Register			0000
PSVPAG	0034	_	—	-	-	_	—	-	—		Program	Memory \	/isibility Pag	ge Addres	ss Pointe	r Register	r	0000
RCOUNT	0036						REPE	AT Loop Coun	ter Register									xxxx
DCOUNT	0038							DCOUNT<1	5:0>								-	xxxx
DOSTARTL	003A						DOS	STARTL<15:1:	>								0	xxxx
DOSTARTH	003C	_	_	_	_	_	_	_	_	_	_		D	OSTART	[H<5:0>			00xx
DOENDL	003E						DC	ENDL<15:1>									0	xxxx
DOENDH	0040	_	-		_	—	_	—	_	—	_			DOEN	IDH		-	00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000

TABLE 4-1: CPU CORE REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. If an application attempts to do
	so, Bit-Reversed Addressing will assume
	priority when active for the X WAGU and X
	WAGU; Modulo Addressing will be dis-
	abled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-50 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>				0			
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx							
	Configuration	TBLPAG<7:0>		Data EA<15:0>					
		1	xxx xxxx	xxxx x	xxx xxxx xxxx				
Program Space Visibility	User	0 PSVPAG<7:		7:0> Data EA<14:0> ⁽¹⁾		:0>(1)			
(Block Remap/Read)		0	XXXX XXX	x	xxx xxxx xxxx xxxx				

TABLE 4-50: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

REGISTER 5-2					LOISTEN		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	_	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	oit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at PC	n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown						nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Nonvolatile Memory Key bits (write-only)

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70192) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), which is set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM RESET** Instruction Glitch Filter MCLR WDT Module Sleep or Idle BOR Internal SYSRST Regulator Vdd POR VDD Rise Detect Trap Conflict Illegal Opcode Uninitialized W Register Configuration Mismatch

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
_	_	INT2IE	_	_	_	_	_		
bit 15		1					bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_		INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE		
bit 7	•			1 1			bit C		
Legend:									
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown		
bit 15-14	Unimplemen	ted: Read as 'd)'						
bit 13	INT2IE: Exter	nal Interrupt 2	Enable bit						
		equest enabled							
	-	equest not ena							
bit 12-5	•	ted: Read as '0							
bit 4		nal Interrupt 1							
		equest enableo							
bit 3	•	change Notifica		Enable bit					
DIT 3	-	request enabled	•						
		equest not ena							
bit 2	AC1IE: Analo	g Comparator	1 Interrupt En	able bit					
	1 = Interrupt r	equest enabled	k						
	0 = Interrupt r	equest not ena	bled						
bit 1	MI2C1IE: I2C	1 Master Event	ts Interrupt Er	nable bit					
		equest enabled							
	-	-							
		0 = Interrupt request not enabled SI2C1IE: I2C1 Slave Events Interrupt Enable bit							
bit 0		1 Slave Events equest enabled							

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—		_	—	_	_		
oit 15							bit	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—	AC4IP2	AC4IP1	AC4IP0		AC3IP2	AC3IP1	AC3IP0	
bit 7							bit	
Legend: R = Readat	le bit	W = Writable	hit	II – Unimplen	nented bit, rea	d as '0'		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown		
					aleu		100011	
bit 15-7	Unimplomon	ted: Read as '	0'					
	-							
bit 6-4		•		upt Priority bits				
	⊥⊥⊥ = Interru	pt is Priority 7 (nignest priorii	ty)				
	•							
	•							
	•							
	• 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled					
bit 3	000 = Interru							
bit 3 bit 2-0	000 = Interru Unimplemen	pt source is dis ted: Read as '	0'	upt Priority bits				
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr	upt Priority bits ty)				
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as '	0' arator 3 Interr					
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr					
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr					
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Compa pt is Priority 7 (0' arator 3 Interr					

REGISTER 7-31: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes the items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

The Timer2/3 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	x

TABLE 12-1: TIMER MODE SETTINGS

12.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

12.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

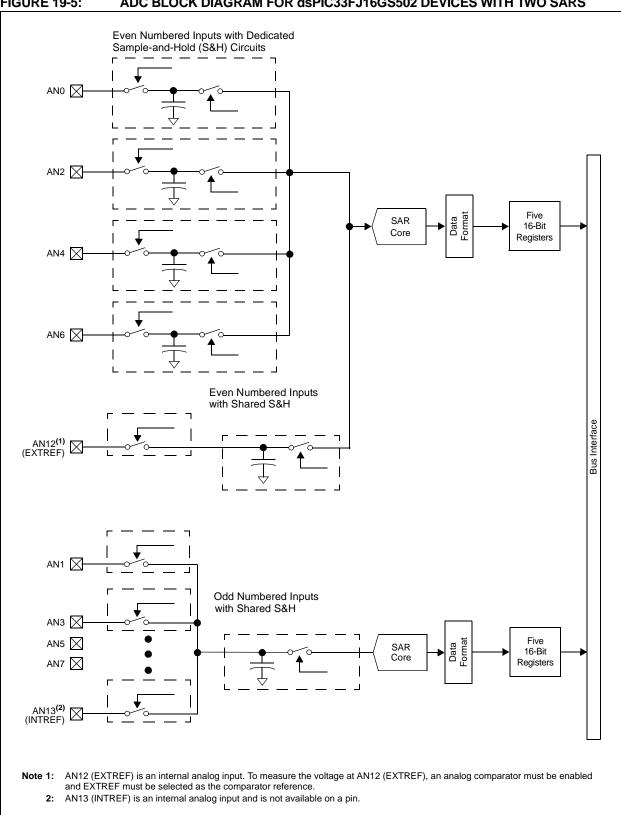
For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Timer2 and Timer 3 that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

Type B Timer (Isw)	Type C Timer (msw)
Timer2	Timer3

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:

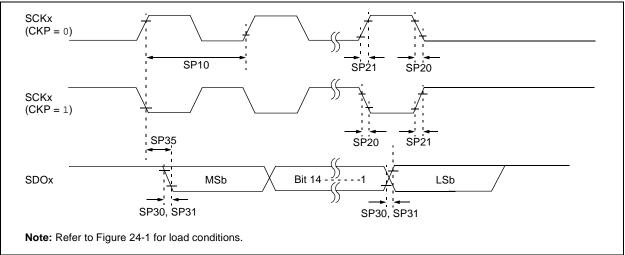

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the features of Timer2/3 for 32-bit operation:

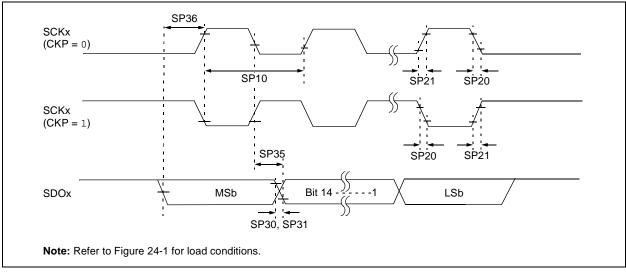
- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, which always contains the most significant word of the count, while TMR2 contains the least significant word.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04


REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of Analog Channels AN13 and AN12. 11111 = Timer2 period match
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected


- Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

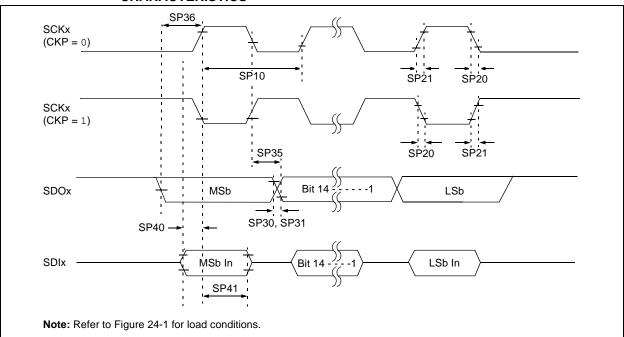

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 24-31	—	—	0,1	0,1	0,1		
9 MHz	—	Table 24-32	—	1	0,1	1		
9 MHz	—	Table 24-33	—	0	0,1	1		
15 MHz	—	—	Table 24-34	1	0	0		
11 MHz	—	—	Table 24-35	1	1	0		
15 MHz	—	—	Table 24-36	0	1	0		
11 MHz	_	—	Table 24-37	0	0	0		

FIGURE 24-11: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING **CHARACTERISTICS**

SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING FIGURE 24-12: **CHARACTERISTICS**

FIGURE 24-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	-	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 24-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency			11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	—	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		I	Device S	Supply			•		
AD01	AVdd	Module VDD Supply	_	_	_	_	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4		
AD02	AVss	Module Vss Supply	—	_		-	AVss is internally connected to Vss		
			Analog	Input					
AD10	VINH-VINL	Full-Scale Input Span	Vss	—	Vdd	V			
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V			
AD12	IAD	Operating Current	_	8		mA			
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V Source Impedance = 100Ω		
AD17	Rin	Recommended Impedance Of Analog Voltage Source	_		100	Ω			
			curacy	@ 1.5 Msp					
AD20A		Resolution		10 Data	Bits	-			
AD21A		Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb			
AD22A		Differential Nonlinearity	-0.9	±0.6	+0.9	LSb			
AD23A		Gain Error	13	15	22	LSb			
AD24A	EOFF	Offset Error	6	7	8	LSb			
AD25A	—	Monotonicity ⁽¹⁾	—	—	—	—	Guaranteed		
	1		curacy	@ 1.7 Msp					
AD20B		Resolution		10 Data					
AD21B		Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb			
AD22B		Differential Nonlinearity	-1.0	±1.0	+1.5	LSb			
AD23B		Gain Error	13	15	22	LSb			
AD24B	EOFF	Offset Error	6	7	8	LSb			
AD25B		Monotonicity ⁽¹⁾		—	—	—	Guaranteed		
			curacy	@ 2.0 Msp			1		
AD20C		Resolution		10 Data		1			
AD21C		Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb			
AD22C		Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb			
AD23C		Gain Error	14	16	23	LSb			
AD24C	EOFF	Offset Error	6	7	8	LSb			
AD25C	—	Monotonicity ⁽¹⁾			_	-	Guaranteed		
4000	тир	-	amic Pe	rformance		40			
AD30		Total Harmonic Distortion	—	-73		dB			
AD31	SINAD	Signal to Noise and Distortion		58		dB			
AD32	SFDR	Spurious Free Dynamic Range		-73		dB			
AD33	FNYQ	Input Signal Bandwidth	—	—	1	MHz			
AD34	ENOB	Effective Number of Bits alog-to-Digital conversion result r	—	9.4		bits	1		

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

Revision F (January 2012)

All occurrences of VDDCORE have been removed throughout the document.

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-4: MAJOR SECTION UPDATES

Section Name	Update Description
"16-Bit Digital Signal Controllers (up to 16-Kbyte Flash and up to 2-Kbyte SRAM) with High-Speed PWM, ADC	Added the VTLA package to the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices (see TABLE 1: "dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Controller Families").
and Comparators"	Added the "Referenced Sources" section.
	 The following updates were made to the "Pin Diagrams" section: Added 5V tolerant pin shading to pins 24-26 in the 28-pin SPDIP, SOIC package for the dsPIC33FJ16GS402
	 Updated pin 31 of the 44-pin QFN package for the dsPIC33FJ16GS404 Added VTLA pin diagrams for the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices
Section 1.0 "Device Overview"	Removed the Precision Band Gap Reference from the device block diagram (see Figure 1-1).
	Updated the Pinout I/O Descriptions for AVDD, and AVss (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Minimum Recommended Connection (see Figure 2-1).
Section 8.0 "Oscillator	Updated the Oscillator System Diagram (see Figure 8-1).
Configuration"	Added auxiliary clock configuration restrictions in Section 8.2 " Auxiliary Clock Generation ".
	Updated or added notes regarding register reset on a POR (see Register 8-1 through Register 8-5).
Section 19.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Added Note 2 to ADCON: Analog-to-Digital Control Register (see Register 19-1).
	Removed all notes from ADSTAT: Analog-to-Digital Status Register (see Register 19-2).
Section 20.0 "High-Speed Analog Comparator"	Updated the Comparator Module Block Diagram (see Figure 20-1).
Section 21.0 "Special Features"	Add a new paragraph at the beginning of Section 21.1 " Configuration Bits ".
	Added the RTSP Effect column to the dsPIC33F Configuration Bits Description table (see Table 21-2).
	Updated the Connections for the On-chip Voltage Regulator diagram (see Figure 21-1).
	Updated the first paragraph of Section 21.7 "In-Circuit Debugger".

INDEX

Α	
AC Characteristics	. 300, 338, 345
Internal FRC Accuracy	
Internal LPRC Accuracy	
Load Conditions	300, 338
ADC	
Control Registers	
Functionality	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	
Auxiliary Clock Generation	138

В

Barrel Shifter
Bit-Reversed Addressing
Example
Implementation76
Sequence Table (16-Entry)77
Block Diagrams
16-Bit Timer1 Module183
Connections for On-Chip Voltage Regulator270
DSP Engine
dsPIC33F06GS101 Devices with 1 SAR240
dsPIC33F06GS102 Devices with 1 SAR241
dsPIC33F06GS202 Devices with 1 SAR242
dsPIC33F16GS402/404 Devices with 1 SAR243
dsPIC33F16GS502 Devices with 2 SARs244
dsPIC33F16GS504 Devices with 2 SARs245
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X0418
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04 CPU Core32
High-Speed Analog Comparator
I2CX Module226
Input Capture x191
Multiplexing of Remappable Output for RPn159
Oscillator System 135
Output Compare x Module193
Partitioned Output Pair, Complementary
PWM Mode200
PLL137
Remappable MUX Input for U1RX157
Reset System89
Shared Port Structure155
Simplified Conceptual High-Speed PWM199
SPIx Module219
Timer2/3 (32-Bit)
Type B Timer185
Type C Timer
UART1
Watchdog Timer (WDT)271
Brown-out Reset (BOR)

С

C Compilers	
MPLAB XC Compilers	
Clock Switching	
Enabling	
Sequence	
•	

Code Examples	
Erasing a Program Memory Page	87
Initiating a Programming Sequence	88
Loading Write Buffers	88
Port Write/Read	156
PWRSAV Instruction Syntax	147
Code Protection 2	67, 273
CodeGuard Security	267
Configuration Bits	267
Description	268
Configuration Register Map	267
Configuring Analog Port Pins	156
CPU	
Control Registers	34
CPU Clocking System	136
PLL Configuration	137
Selection	136
Sources	136
Customer Change Notification Service	392
Customer Notification Service	
Customer Support	392

D

DAC	264
Output Range	264
Data Accumulators and Adder/Subtracter	-
Data Space Write Saturation	42
Overflow and Saturation	40
Round Logic	41
Write Back	41
Data Address Space	45
Alignment	45
Memory Map for dsPIC33FJ06GS101/102 Devices with 256 Bytes of RAM	
Memory Map for dsPIC33FJ06GS202 Device	
with 1-Kbyte RAM	
Memory Map for dsPIC33FJ16GS402/404/502/504	
Devices with 2-Kbyte RAM	
Near Data Space	
Software Stack	
Width	45
Data Addressing	
Overview	31
DC and AC Characteristics	
Graphs and Tables	347
DC Characteristics 288	3, 342
Doze Current (IDOZE) 294	4, 344
High Temperature	334
I/O Pin Input Specifications	295
I/O Pin Output Specifications	7, 336
Idle Current (IIDLE) 292	2, 343
Operating Current (IDD)), 342
Operating MIPS vs. Voltage	-
Power-Down Current (IPD)	
Program Memory 299	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	