

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504t-50i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CONTROLLER FAMILIES

		(si				Rer	napp	able I	Perip	herals						ADC			
Device	Pins	Program Flash Memory (Kbytes)	RAM (Bytes)	Remappable Pins	16-Bit Timer	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	Analog Comparator	External Interrupts ⁽³⁾	DAC Output	I²C™	SARs	Sample-and-Hold (S&H) Circuit	Analog-to-Digital Inputs	I/O Pins	Packages
dsPIC33FJ06GS101	18	6	256	8	2	0	1	1	1	2x2 ⁽¹⁾	0	3	0	1	1	3	6	13	SOIC
dsPIC33FJ06GS102	28	6	256	16	2	0	1	1	1	2x2	0	3	0	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ06GS202	28	6	1K	16	2	1	1	1	1	2x2	2	3	1	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS402	28	16	2K	16	3	2	2	1	1	3x2	0	3	0	1	1	4	8	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS404	44	16	2K	30	3	2	2	1	1	3x2	0	3	0	1	1	4	8	35	QFN, TQFP, VTLA
dsPIC33FJ16GS502	28	16	2K	16	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	8	21	SPDIP, SOIC, QFN-S, UQFN
dsPIC33FJ16GS504	44	16	2K	30	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	12	35	QFN, TQFP, VTLA

Note 1: The PWM4H:PWM4L pins are remappable.

2: The PWM Fault pins and PWM synchronization pins are remappable.

3: Only two out of three interrupts are remappable.

Table of Contents

dsPIC	C33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 Product Families	2
1.0	Device Overview	17
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	21
3.0	CPU	
4.0	Memory Organization	43
5.0	Flash Program Memory	83
6.0	Resets	89
7.0	Interrupt Controller	97
8.0	Oscillator Configuration	. 135
9.0	Power-Saving Features	. 147
10.0	I/O Ports	. 155
11.0	Timer1	. 183
12.0	Timer2/3 Features	. 185
13.0	Input Capture	. 191
14.0	Output Compare	. 193
15.0	High-Speed PWM	
16.0		
17.0	Inter-Integrated Circuit (I ² C [™])	
18.0	Universal Asynchronous Receiver Transmitter (UART)	. 233
19.0	High-Speed 10-bit Analog-to-Digital Converter (ADC)	. 239
20.0	High-Speed Analog Comparator	
21.0	Special Features	. 267
22.0	Instruction Set Summary	. 275
23.0	Development Support	
24.0	Electrical Characteristics	
25.0	High-Temperature Electrical Characteristics	
26.0	50 MIPS Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
28.0	Packaging Information	. 351
	/icrochip Web Site	
Custo	omer Change Notification Service	. 393
Custo	omer Support	. 393
Produ	uct Identification System	. 395

6.1 System Reset

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source. A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	_	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd(1)	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd(1)	Tost ⁽²⁾	ТLOCК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	TLOCK ⁽³⁾
LPRC	Toscd ⁽¹⁾	_	—	Toscd ⁽¹⁾

TABLE 6-1:OSCILLATOR DELAY

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	—		—	—	_	PSEMIE	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	PSEMIE: PW	M Special Ever	nt Match Interi	rupt Enable bit			
	1 = Interrupt i	request enabled	d				

- 0 = Interrupt request not enabled
- bit 8-0 Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_		—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIE: UART1 Error Interrupt Enable bit

1 = Interrupt request enabled

- 0 = Interrupt request not enabled
- bit 0 Unimplemented: Read as '0'

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions
- The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active

The device will wake-up from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 9-	3: PMD	3: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	—	—	—	—	CMPMD	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is up		x = Bit is unkr	nown		

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Analog Comparator Module Disable bit
	 Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit

1 = Reference clock generator module is disabled

- 0 = Reference clock generator module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0		
bit 15							bit		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	<u> </u>	—	—	—			_		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-14	Unimplemer	ted: Read as '	כי						
bit 13-8	FLT1R<5:0>	: Assign PWM I	ault Input 1 (FLT1) to the Co	orresponding R	Pn Pin bits			
	111111 = Input tied to Vss								
	TTTTTT - UN	out fied to VSS							
	100011 = In	out tied to RP35							
	100011 = Ing 100010 = Ing	out tied to RP35 out tied to RP34	ŀ						
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }						
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34	 }						
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }						
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }						
	100011 = Ing 100010 = Ing 100001 = Ing	out tied to RP35 out tied to RP34 out tied to RP33	 }						
	100011 = Ing 100010 = Ing 100001 = Ing 100000 = Ing •	out tied to RP35 out tied to RP34 out tied to RP33	 }						

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- Optionally, the external clock input (T1CK) can be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

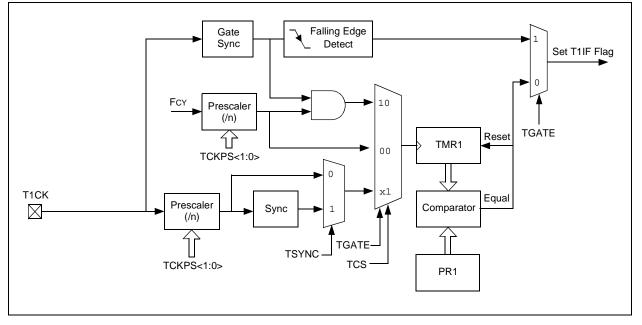
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1: TIN	ER MODE SETTINGS
-----------------	------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

HS/HC-0) HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15	ł						bit 8
R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	—	—		CAM ^(2,3)	XPRES ⁽⁴⁾	IUE
bit 7							bit
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bi	it	
R = Readal	hle hit	W = Writable bit			mented bit, rea		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unl	nown
		1 – Dit 13 Set			caleu		NIOWII
bit 15	FLTSTAT: F	ault Interrupt Statu	us bit ⁽¹⁾				
		rrupt is pending					
		interrupt is pendin	g; this bit is cle	ared by setting	FLTIEN = 0		
bit 14	CLSTAT: Cu	urrent-Limit Interru	pt Status bit ⁽¹⁾				
		mit interrupt is per nt-limit interrupt is	Q	t is cleared by	setting CLIEN	= 0	
bit 13	TRGSTAT: Tr	rigger Interrupt Sta	itus bit				
		terrupt is pending					
	0 = No trigge	r interrupt is pendi	ng; this bit is cl	eared by settin	g TRGIEN = 0)	
bit 12	FLTIEN: Fai	ult Interrupt Enable	e bit				
		rrupt is enabled					
		rrupt is disabled a		T bit is cleared			
bit 11		rent-Limit Interrupt					
		mit interrupt is ena mit interrupt is dis		CLSTAT bit is c	leared		
bit 10	TRGIEN: Trig	ger Interrupt Enat	ole bit				
		event generates a vent interrupts are			it is cleared		
bit 9	ITB: Indepe	ndent Time Base I	Mode bit ⁽³⁾				
	1 = PHASEx/	/SPHASEx registe egister provides tir	r provides time		r this PWM ge	enerator	
bit 8		ster Duty Cycle Re	-				
		ister provides duty Cx register provid				erator	
bit 7-6		ead-Time Control			lie i till gene		
	11 = Reserve		513				
		ne function is disa	bled				
		e dead time is acti dead time is activ					
bit 5-3		ited: Read as '0'	- ,				
Note 1:	Software must clo	ar the interrupt sta	tue here and th	e correspondir	a IFSy hit in t	he interrupt or	ontroller
2:		Time Base mode (-	-	
3:	-	be changed only v	when PTEN = 0	. Changing the	e clock selectio	on during ope	ration will
		real Dariad Deast	modo confirm				

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER

4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

REGISTER 15-9: PHA	SEx: PWMx PRIMARY PHASE-SHIFT REGISTER ^(1,2)
--------------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	it	U = Unimplemented bit, read as '0'			
-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown			nown				

bit 15-0 PHASEx<15:0>: PWM Phase-Shift Value or Independent Time Base Period for this PWM Generator bits

- **Note 1:** If PWMCONx<ITB> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Independent Time Base period value for PWMxL only
 - The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0		
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit (
Legend:			mented bit, re	ad as 'O'					
R = Readable	hit	W = Writable			re Clearable bit				
-n = Value at F		(1) = Bit is set		0' = Bit is clear		x = Bit is unkno	nwn		
bit 15	12CEN · 120	Cx Enable bit							
			odule, and cor	nfigures the SE	Ax and SCLx pir	ns as serial port r	oins		
					trolled by port fur				
bit 14	Unimplem	ented: Read	as '0'						
bit 13	I2CSIDL:	2Cx Stop in Ic	lle Mode bit						
		tinues module ues module o	•		ers an Idle mode				
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)								
	1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)								
	If STREN = 1:								
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clea								
	-	-	nsmission. Ha	ardware clear a	t end of slave ree	ception.			
	If STREN =		can only wri	te '1' to releas	se clock). Hardw	are clear at heri	nning of slav		
	transmissi	•				are clear at begi	Thing of Slav		
bit 11	IPMIEN: Ir	ntelligent Perip	heral Manage	ement Interface	e (IPMI) Enable b	bit			
	1 = IPMI m	node is enable	d; all address	es are Acknow	. ,				
L:4 4 0		node is disable							
bit 10		Bit Slave Add		_					
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address								
bit 9		Disable Slew F		bit					
		ate control is o ate control is e							
bit 8		1Bus Input Lev							
bit 0		-		ant with SMBu	s specification				
		es SMBus inp			e ep comounon				
bit 7	GCEN: Ge	eneral Call Ena	able bit (when	operating as I	² C slave)				
	1 = Enable recept	-	nen a general	call address is	received in the la	2CxRSR (module	e is enabled fo		
		al call addres	s is disabled						
bit 6	STREN: S	CLx Clock Str	etch Enable b	oit (when opera	ting as I ² C slave)			
		njunction with							
		es software or		-					
	v = v sable	es software or	receive clock	stretching					

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I^2C . Hardware is clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at end of master Stop sequence.0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at end of master Start sequence.
	0 = Start condition is not in progress

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3 ⁽¹⁾	PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾	TRGSRC34 ⁽¹⁾	TRGSRC33 ⁽¹⁾	TRGSRC32 ⁽¹⁾	TRGSRC31 ⁽¹⁾	TRGSRC30 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2 ⁽²⁾	PEND2 ⁽²⁾	SWTRG2(2)	TRGSRC24(2)	TRGSRC23 ⁽²⁾	TRGSRC22 ⁽²⁾	TRGSRC21 ⁽²⁾	TRGSRC20 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, reac	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN3: Interrupt Request Enable 3 bit ⁽¹⁾ 1 = Enables IRQ generation when requested conversion of Channels AN7 and AN6 is completed 0 = IRQ is not generated
bit 14	PEND3: Pending Conversion Status 3 bit ⁽¹⁾
	 1 = Conversion of Channels AN7 and AN6 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG3: Software Trigger 3 bit ⁽¹⁾
	 1 = Starts conversion of AN7 and AN6 (if selected by the TRGSRCx bits)⁽³⁾ This bit is automatically cleared by hardware when the PEND3 bit is set. 0 = Conversion has not started
Note 1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.

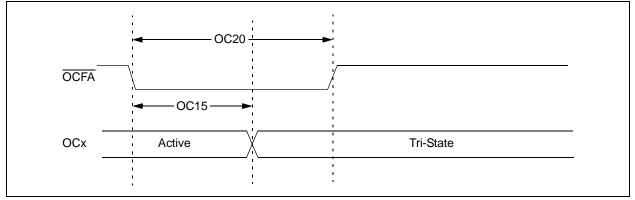
- 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of Analog Channels AN13 and AN12. 11111 = Timer2 period match
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected

- Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V-tolerant designated pins
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT


TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

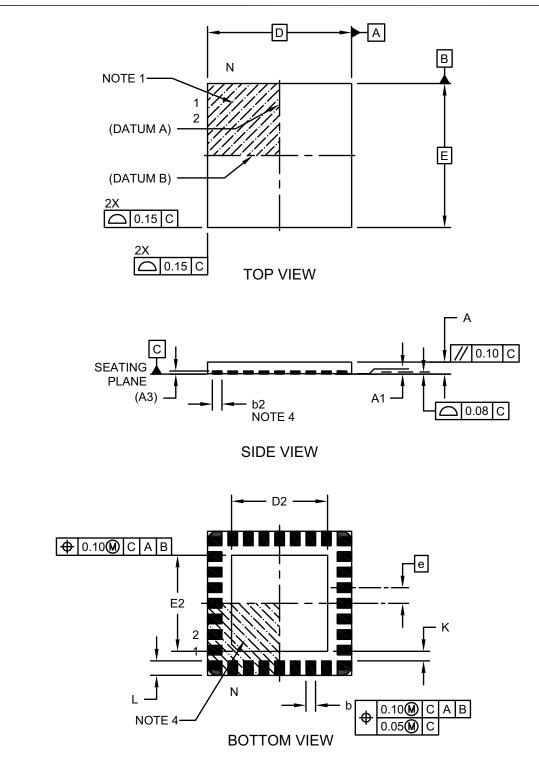
TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

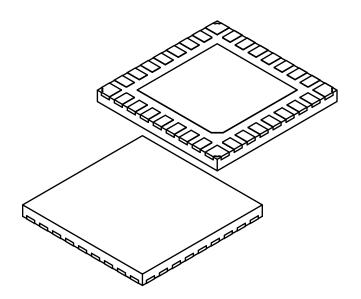
DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Power-Down	Power-Down Current (IPD) ^(2,4)						
HDC60e	1000	2000	μA	+150°C	3.3V	Base Power-Down Current	
HDC61c	100	110	μΑ	+150°C 3.3V Watchdog Timer Current: ΔΙωστ ⁽³⁾			


Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-0209B Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N		28			
Pitch	е	0.65 BSC				
Overall Height	Α	0.40	0.50	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	(A3)	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2		4.00			
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2		4.00			
Terminal Width	b	0.35	0.40	0.45		
Corner Pad	b2	0.25	0.40	0.45		
Terminal Length	L	0.55	0.60	0.65		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209B Sheet 2 of 2

Revision C and D (March 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of PGCx/EMUCx and PGDx/EMUDx (where x = 1, 2, or 3) to PGECx and PGEDx
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

Other major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Digital	Added "Application Examples" to list of features
Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Added ACMP1-ACMP4 pin names and Peripheral Pin Select capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for ADCON in Table 4-25.
	Removed reference to dsPIC33FJ06GS102 devices in the PMD Register Map and updated bit definitions for PMD1 and PMD6, and removed PMD7 (see Table 4-43).
	Added a new PMD Register Map, which references dsPIC33FJ06GS102 devices (see Table 4-44).
	Updated RAM stack address and SPLIM values in the third paragraph of Section 4.2.6 "Software Stack"
	Removed Section 4.2.7 "Data Ram Protection Feature".
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.

TABLE A-2: MAJOR SECTION UPDATES