

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs504t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

- bit 1 RND: Rounding Mode Select bit 1 = Biased (conventional) rounding is enabled
 - 0 =Unbiased (convergent) rounding is enabled
- bit 0 IF: Integer or Fractional Multiplier Mode Select bit
 - 1 = Integer mode is enabled for DSP multiply ops
 - 0 = Fractional mode is enabled for DSP multiply ops
- Note 1: This bit will always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

Refer to Section 21.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or Uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

TABLE 7-1:	INTERR	UPT VECTORS		
Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source
		Highes	st Natural Order Priority	/
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	Reserved
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Fault
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done
22-23	14-15	0x000030-0x000032	0x000130-0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29-36	21-28	0x00003E-0x00004C	0x00013E-0x00014C	Reserved
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38-64	30-56	0x000050-0x000084	0x000150-0x000184	Reserved
65	57	0x000086	0x000186	PWM PSEM Special Event Match
66-72	58-64	0x000088-0x000094	0x000188-0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt
74-101	66-93	0x000098-0x0000CE	0x000198-0x0001CE	Reserved
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt
106-110	98-102	0x0000D8-0x0000E0	0x0001D8-0x0001E0	Reserved
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4
114-117	106-109	0x0000E8-0x0000EE	0x0001E8-0x0001EE	Reserved
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done
121	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done
122	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done
120	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done
125	117	0x0000FE	0x0001FE	Reserved
0			t Natural Order Priority	

TABLE 7-1:INTERRUPT VECTORS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2 STKERR: Stack Error Trap Status bit
 - 1 = Stack error trap has occurred
 - 0 = Stack error trap has not occurred
- bit 1 OSCFAIL: Oscillator Failure Trap Status bit
 - 1 = Oscillator failure trap has occurred
 - 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	_	—	_	_	PSEMIF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	—				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	alue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

REGISTER 7-7: IFS3: INTERRUPT FLAG STATUS REGISTER 3

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIF	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIF: UART1 Error Interrupt Flag Status bit

I = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
_	_		—	—	_	PSEMIE		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7						•	bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-10	Unimplemented: Read as '0'							
bit 9	PSEMIE: PW	M Special Ever	nt Match Interi	rupt Enable bit				
	1 = Interrupt i	request enabled	d					

- 0 = Interrupt request not enabled
- bit 8-0 Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_		—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIE: UART1 Error Interrupt Enable bit

1 = Interrupt request enabled

- 0 = Interrupt request not enabled
- bit 0 Unimplemented: Read as '0'

R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7	1					•	bit 0	
	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
							5110	
bit 15	•		•	•			bit 8	
_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP23R<5:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP22R<5:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	
bit 15				·	•		bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	
bit 7		•		·	·	•	bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8		Peripheral Ou -2 for periphera		•	RP25 Output F	Pin bits		
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-0 RP24R<5:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-2 for peripheral function numbers)								

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

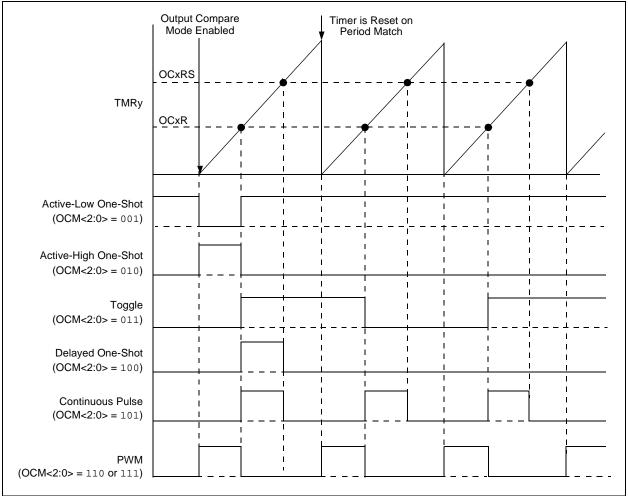
Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

REGISTER 1	1-1: T1CO	N: TIMER1 C	ONTROL RE	GISTER							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	—	—	—	—					
bit 15							bit 8				
	D 4 4 4				5444.6	D b b c c					
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	TON: Timer1	On bit									
	1 = Starts 16-	bit Timer1									
	0 = Stops 16-	bit Timer1									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Timer1 Stop in Idle Mode bit										
		ues module op s module opera			dle mode						
bit 12-7		-									
bit 6	Unimplemented: Read as '0' TGATE: Timer1 Gated Time Accumulation Enable bit										
bit 0	When TCS = 1:										
	This bit is ignored.										
	When TCS =	0:									
		e accumulation									
bit E 1		e accumulation		- Coloct hito							
bit 5-4	TCKPS<1:0> Timer1 Input Clock Prescale Select bits										
	11 = 1:256 10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3	Unimplemen	ted: Read as '	0'								
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit										
	When $TCS = 1$:										
		izes external c		aput							
	When TCS =	synchronize e>	Riemai Ciuck II	iput							
	This bit is igno										
bit 1	•	Clock Source S	Select bit								
		clock from T1C		rising edge)							
	0 = Internal cl										

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user


TABLE 14-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	Refer to "Output Compare" (DS70209)						
	in the "dsPIC33F/PIC24H Family						
	Reference Manual" for OCxR and OCxRS						
	register restrictions.						

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
111	PWM with Fault Protection	'0', if OCxR is zero	OCFA falling edge for OC1 to OC4		
		'1', if OCxR is non-zero			
110 PWM without Fault Protection		'0', if OCxR is zero	No interrupt		
		'1', if OCxR is non-zero			
101	Continuous Pulse	0	OCx falling edge		
100	Delayed One-Shot	0	OCx falling edge		
011	Toggle	Current output is maintained	OCx rising and falling edge		
010	Active-High One-Shot	1	OCx falling edge		
001	Active-Low One-Shot	0	OCx rising edge		
000	Module Disabled	Controlled by GPIO register	—		

FIGURE 14-2: OUTPUT COMPARE OPERATION

NOTES:

HS/HC-0) HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLTSTAT(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾				
bit 15	ł						bit 8				
R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
DTC1	DTC0	—	—		CAM ^(2,3)	XPRES ⁽⁴⁾	IUE				
bit 7							bit				
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bi	it					
R = Readal	hle hit	W = Writable bit			mented bit, rea						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unl	nown				
		1 – Dit 13 Set			caleu		NIOWII				
bit 15	FLTSTAT: F	ault Interrupt Statu	us bit ⁽¹⁾								
		rrupt is pending									
		interrupt is pendin	g; this bit is cle	ared by setting	FLTIEN = 0						
bit 14	CLSTAT: Cu	urrent-Limit Interru	pt Status bit ⁽¹⁾								
		mit interrupt is per nt-limit interrupt is	Q	t is cleared by	setting CLIEN	= 0					
bit 13	TRGSTAT: Tr	rigger Interrupt Sta	itus bit								
		terrupt is pending									
	0 = No trigge	r interrupt is pendi	ng; this bit is cl	eared by settin	g TRGIEN = 0)					
bit 12	FLTIEN: Fai	FLTIEN: Fault Interrupt Enable bit									
		rrupt is enabled									
		rrupt is disabled a		T bit is cleared							
bit 11		rent-Limit Interrupt									
		mit interrupt is ena mit interrupt is dis		CLSTAT bit is c	leared						
bit 10	TRGIEN: Trig	ger Interrupt Enat	ole bit								
		event generates a vent interrupts are			it is cleared						
bit 9	ITB: Indepe	ndent Time Base I	Mode bit ⁽³⁾								
	1 = PHASEx/	/SPHASEx registe egister provides tir	r provides time		r this PWM ge	enerator					
bit 8		ster Duty Cycle Re	-								
		ister provides duty Cx register provid				erator					
bit 7-6		ead-Time Control			lie i till gene						
	11 = Reserve		513								
		ne function is disa	bled								
		e dead time is acti dead time is activ									
bit 5-3		ited: Read as '0'	- ,								
Note 1:	Software must clo	ar the interrupt sta	tue here and th	e correspondir	a IFSy hit in t	he interrupt or	ontroller				
2:		Time Base mode (-	-					
3:	-	be changed only v	when PTEN = 0	. Changing the	e clock selectio	on during ope	ration will				
		real Dariad Deast	mode confirm								

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER

4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both primary and secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

NOTES:

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

```
bit 4-0
               TRGSRC0<4:0>: Trigger 0 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN1 and AN0.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = \text{Reserved}
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description						
#text	Means literal defined by "text"						
(text)	Means "content of text"						
[text]	Means "the location addressed by text"						
{ }	Optional field or operation						
<n:m></n:m>	Register bit field						
.b	Byte mode selection						
.d	Double-Word mode selection						
.S	Shadow register select						
.W	Word mode selection (default)						
Acc	One of two accumulators {A, B}						
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}						
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$						
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero						
Expr	Absolute address, label or expression (resolved by the linker)						
f	File register address ∈ {0x00000x1FFF}						
lit1	1-bit unsigned literal ∈ {0,1}						
lit4	4-bit unsigned literal ∈ {015}						
lit5	5-bit unsigned literal ∈ {031}						
lit8	8-bit unsigned literal ∈ {0255}						
lit10	10-bit unsigned literal $\in \{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode						
lit14	14-bit unsigned literal $\in \{016384\}$						
lit16	16-bit unsigned literal $\in \{065535\}$						
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'						
None	Field does not require an entry, can be blank						
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate						
PC	Program Counter						
Slit10	10-bit signed literal ∈ {-512511}						
Slit16	16-bit signed literal ∈ {-3276832767}						
Slit6	6-bit signed literal \in {-1616}						
Wb	Base W register ∈ {W0W15}						
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }						
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }						
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)						

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Typical ⁽¹⁾	Мах	Units			Conditions	
Operating C	Current (IDD)) ⁽²⁾					
DC20d	55	70	mA	-40°C			
DC20a	55	70	mA	+25°C	3.3V	10 MIPS	
DC20b	55	70	mA	+85°C	3.3V	See Note 2	
DC20c	55	70	mA	+125°C			
DC21d	68	85	mA	-40°C			
DC21a	68	85	mA	+25°C	3.3V	16 MIPS	
DC21b	68	85	mA	+85°C	3.3V	See Note 2 and Note 3	
DC21c	68	85	mA	+125°C			
DC22d	78	95	mA	-40°C			
DC22a	78	95	mA	+25°C	3.3V	20 MIPS	
DC22b	78	95	mA	+85°C	3.3V	See Note 2 and Note 3	
DC22c	78	95	mA	+125°C			
DC23d	88	110	mA	-40°C			
DC23a	88	110	mA	+25°C	3.3V	30 MIPS	
DC23b	88	110	mA	+85°C	3.3V	See Note 2 and Note 3	
DC23c	88	110	mA	+125°C			
DC24d	98	120	mA	-40°C			
DC24a	98	120	mA	+25°C	3.3V	40 MIPS	
DC24b	98	120	mA	+85°C	5.5 v	See Note 2	
DC24c	98	120	mA	+125°C			
DC25d	128	160	mA	-40°C		40 MIPS	
DC25a	125	150	mA	+25°C	3.3V	See Note 2, except PWM is	
DC25b	121	150	mA	+85°C	5.5V	operating at maximum speed	
DC25c	119	150	mA	+125°C		(PTCON2 = 0x0000)	
DC26d	115	140	mA	-40°C		40 MIPS	
DC26a	112	140	mA	+25°C	3.3V	See Note 2, except PWM is	
DC26b	110	140	mA	+85°C	5.5V	operating at 1/2 speed	
DC26c	108	140	mA	+125°C		(PTCON2 = 0x0001)	

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

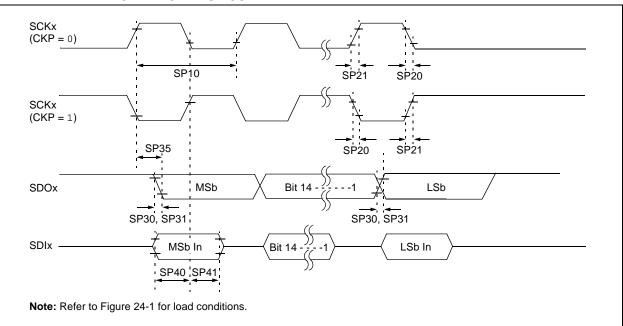
Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while (1) statement
- JTAG disabled
- **3:** These parameters are characterized but not tested in manufacturing.

DC CHARACTERI	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				°C for Industrial		
Parameter No. Typical ⁽¹⁾ Max			Doze Ratio	Units	Conditions		
Doze Current (IDO	ze) ⁽²⁾		·				
DC73a	75	105	1:2	mA			
DC73f	60	105	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	60	105	1:128	mA			
DC70a	75	105	1:2	mA			
DC70f	60	105	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	60	105	1:128	mA			
DC71a	75	105	1:2	mA			
DC71f	60	105	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	60	105	1:128	mA	1		
DC72a	75	105	1:2	mA		İ	
DC72f	60	105	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	60	105	1:128	mA	1		


TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG disabled

FIGURE 24-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-33:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns		

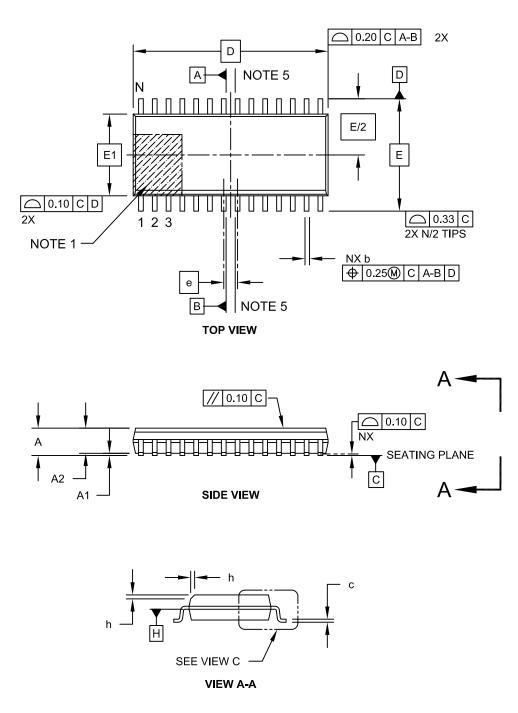
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

4: Assumes 50 pF load on all SPIx pins.

^{3:} The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

TABLE 25-6: DC CHARACTERISTICS: PROGRAM MEMORY


DC CHA	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_	—	E/W	-40°C to +150°C ⁽²⁾
HD134	TRETD	Characteristic Retention	20		—	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above +125°C.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2