

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21284ksp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table 1.6 Pin Name Information by Pin Number

				I/O F	Pin Functions for of	Peripheral Modu	les	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1		P3_5		TRCIOD		SSCK	SCL	
2		P3_7		TRAO	RXD1/(TXD1) ⁽¹⁾	SSO		
3	RESET							
4	XOUT/ XCOUT ⁽²⁾	P4_7						
5	VSS/AVSS							
6	XIN/XCIN(2)	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	ĪNT0		(RXD1) ⁽¹⁾			
10		P1_7	ĪNT1	TRAIO				
11		P1_6			CLK0	(SSI) ⁽¹⁾		
12		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0			
13		P1_4			TXD0			
14		P1_3	KI3	TRBO				AN11
15		P1_2	KI2	TRCIOB				AN10
16	VRFF	P4_2						
17		P1_1	KI1	TRCIOA/ TRCTRG				AN9
18		P1_0	KI0					AN8
19		P3_3	ĪNT3	TRCCLK		SSI		
20		P3_4		TRCIOC		SCS	SDA	

- 1. This can be assigned to the pin in parentheses by a program.
- 2. XCIN, XCOUT can be used only for N or D version.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

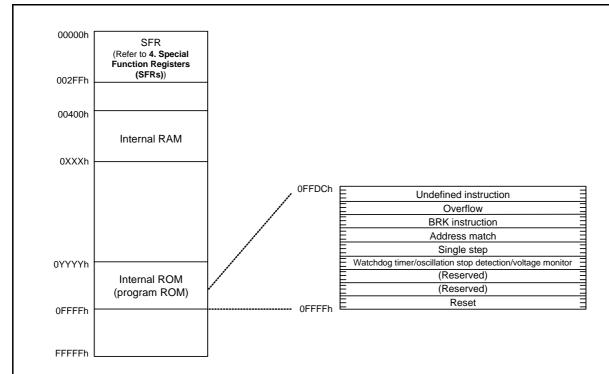
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/28 Group


Figure 3.1 is a Memory Map of R8C/28 Group. The R8C/28 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

NOTE:

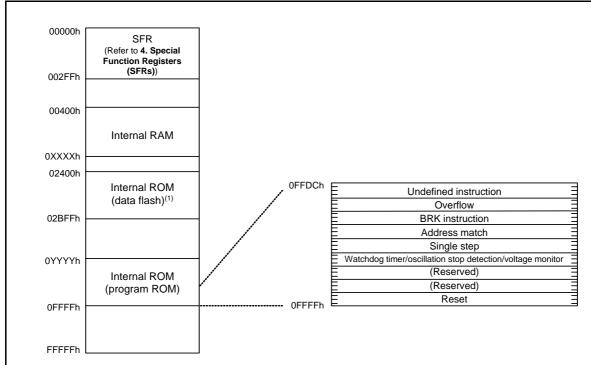
1. The blank regions are reserved. Do not access locations in these regions.

5	Inte	rnal ROM	Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F21282SNSP, R5F21282SDSP, R5F21282SNXXXSP, R5F21282SDXXXSP	8 Kbytes	0E000h	512 bytes	005FFh	
R5F21284SNSP, R5F21284SDSP, R5F21284JSP, R5F21284KSP, R5F21284SNXXXSP, R5F21284SDXXXSP, R5F21284JXXXSP, R5F21284KXXXSP	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F21286JSP, R5F21286KSP, R5F21286JXXXSP, R5F21286KXXXSP	32 Kbytes	08000h	1.5 Kbytes	009FFh	

Figure 3.1 Memory Map of R8C/28 Group

3.2 R8C/29 Group

Figure 3.2 is a Memory Map of R8C/29 Group. The R8C/29 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

- 1. Data flash block A (1 Kbyte) and B (1 Kbyte) are shown.
- 2. The blank regions are reserved. Do not access locations in these regions.

Post Month on	Inte	rnal ROM	Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F21292SNSP, R5F21292SDSP, R5F21292SNXXXSP, R5F21292SDXXXSP	8 Kbytes	0E000h	512 bytes	005FFh	
R5F21294SNSP, R5F21294SDSP, R5F21294JSP, R5F21294KSP, R5F21294SNXXXSP, R5F21294SDXXXSP, R5F21294JXXXSP, R5F21294KXXXSP	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F21296JSP, R5F21296KSP, R5F21296JXXXSP, R5F21296KXXXSP	32 Kbytes	08000h	1.5 Kbytes	009FFh	

Figure 3.2 Memory Map of R8C/29 Group

SFR Information (3)⁽¹⁾ Table 4.3

Address	Register	Symbol	After reset
0080h	1109,500		7
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0087H			
0089h			
0089h			
008Bh			
008Ch			
008Ch			
008Eh			
008Fh			
0090h			
0090H			
0091h			
0092h 0093h			
0093h 0094h			
0094h 0095h			
0095h			
0097h 0098h			
0098h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh		LIONED	
00A0h	UARTO Transmit/Receive Mode Register	U0MR	00h
00A1h	UARTO Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h	LIANTO T	11000	XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	U0RB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Register	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh			XXh
00B0h			1
00B1h			
00B2h			1
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
00BAh	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00011000b
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽²⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽²⁾	SSMR2 / SAR	00h
00BEh		SSTDR / ICDRT	FFh
	SS Transmit Data Register / IIC bus Transmit Data Register(2)		
00BFh X: Undefined	SS Receive Data Register / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh

X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.
2. Selected by the IICSEL bit in the PMR register.

SFR Information (4)⁽¹⁾ Table 4.4

Address 00C0h	Register	Symbol	After reset
UUCUII	A/D Register	AD	XXh
00045	AD Register	AD	
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
	77D Control (Neglote) 2	ADOONE	0011
00D5h	A/D Control Bogistor 0	ADCONO	004
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h		D4	001
00E1h	Port P1 Register	P1	00h
00E2h			
00E3h	Port P1 Direction Register	PD1	00h
00E4h			
00E5h	Port P3 Register	P3	00h
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	00h
00E9h	1 ort 1 4 register	1 7	0011
00EAh	Port P4 Direction Register	PD4	00h
	Fort P4 Direction Register	FD4	0011
00EBh			
00ECh			
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			
00F2h			
22521		+	
00F3h			
00F4h	Dia Calant Danistan 4	DINIODA	004
00F5h	Pin Select Register 1	PINSR1	00h
00F6h	Pin Select Register 2	PINSR2	00h
00F7h	Pin Select Register 3	PINSR3	00h
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTF	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	00h
00FEh	Port P1 Drive Capacity Control Register ⁽²⁾	P1DRR	00h
00FEn	Forter Drive Capacity Control Register ²⁷	FIDINI	0011
	1	1	

X: Undefined

The blank regions are reserved. Do not access locations in these regions.
 In J, K version these regions are reserved. Do not access locations in these regions.

Table 4.7 SFR Information (7)⁽¹⁾

Address	Register	Symbol	After reset
0180h	-5		
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh 0190h			
0191h 0192h			
0192h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h 01A5h			
01A5h			
01A7h			
01A711			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h	Flash Memory Control Register 4	FMR4	01000000b
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h		EMBO	00000004
01B7h	Flash Memory Control Register 0	FMR0	00000001b
01B8h			
01B9h			
01BAh			
01BBh			
01BCh 01BDh			
01BDh 01BEh			
01BEN			
UIDFII			

FFFFh X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

Option Function Select Register

2. The OFS register cannot be changed by a program. Use a flash programmer to write to it.

OFS

(Note 2)

5. Electrical Characteristics

5.1 N, D Version

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Courada a l	,	2	Conditions		Standard		I India
Symbol	1	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.2	-	5.5	V
Vss/AVss	Supply voltage			_	0	-	V
VIH	Input "H" voltage			0.8 Vcc	=	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		_	-	-80	mA
IOH(peak)	Peak output "H"	Except P1_0 to P1_7		-	-	-10	mA
	current	P1_0 to P1_7		-	=	-40	mA
IOH(avg)	Average output	Except P1_0 to P1_7		-	=	-5	mA
	"H" current	P1_0 to P1_7		-	=	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	_	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	_	80	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_7		-	-	10	mA
	currents	P1_0 to P1_7		-	-	40	mA
IOL(avg)	Average output	Except P1_0 to P1_7		-	-	5	mA
	"L" current	P1_0 to P1_7		-	-	20	mA
f(XIN)	XIN clock input osc	cillation frequency	3.0 V ≤ Vcc ≤ 5.5 V	0	=	20	MHz
f(XIN)			2.7 V ≤ Vcc < 3.0 V	0	-	10	MHz
			2.2 V ≤ Vcc < 2.7 V	0	-	5	MHz
f(XCIN)	XCIN clock input of	scillation frequency	2.2 V ≤ Vcc ≤ 5.5 V	0	=	70	kHz
=	System clock	OCD2 = 0	3.0 V ≤ Vcc ≤ 5.5 V	0	=	20	MHz
		XIN clock selected	2.7 V ≤ Vcc < 3.0 V	0	-	10	MHz
			2.2 V ≤ Vcc < 2.7 V	0	=	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	=	kHz
			FRA01 = 1 High-speed on-chip oscillator clock selected 3.0 V ≤ Vcc ≤ 5.5 V	_	-	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected 2.7 V ≤ Vcc ≤ 5.5 V	_	-	10	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected 2.2 V ≤ Vcc ≤ 5.5 V	_	-	5	MHz

^{1.} Vcc = 2.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

^{2.} The average output current indicates the average value of current measured during 100 ms.

Table 5.3	A/D Converter Characteristic	cs
-----------	------------------------------	----

Symbol	Parameter		Conditions	Standard			Unit
Symbol			Conditions	Min.	Тур.	Max.	Offic
-	Resolution		Vref = AVCC	=	-	10	Bits
-	Absolute	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	=	-	±3	LSB
	accuracy	8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	=	-	±2	LSB
		10-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	=	-	±5	LSB
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	=	-	±2	LSB
		10-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	=	-	±5	LSB
		8-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	=	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	-	μS
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltag	e		2.2	-	AVcc	V
VIA	Analog input volta	age ⁽²⁾		0	=	AVcc	V
-	A/D operating	Without sample and hold	Vref = AVCC = 2.7 to 5.5 V	0.25	-	10	MHz
	clock frequency	With sample and hold	Vref = AVCC = 2.7 to 5.5 V	1	-	10	MHz
		Without sample and hold	Vref = AVCC = 2.2 to 5.5 V	0.25	-	5	MHz
		With sample and hold	Vref = AVCC = 2.2 to 5.5 V	1	-	5	MHz

- 1. AVCC = 2.2 to 5.5 V at $T_{OPT} = -20$ to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.
- 2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

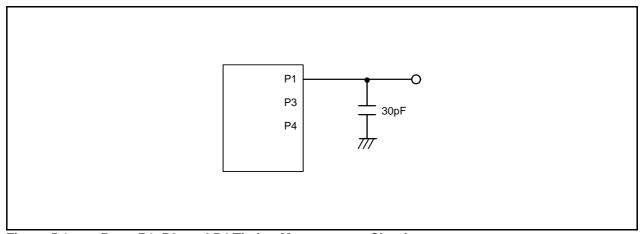


Figure 5.1 Ports P1, P3, and P4 Timing Measurement Circuit

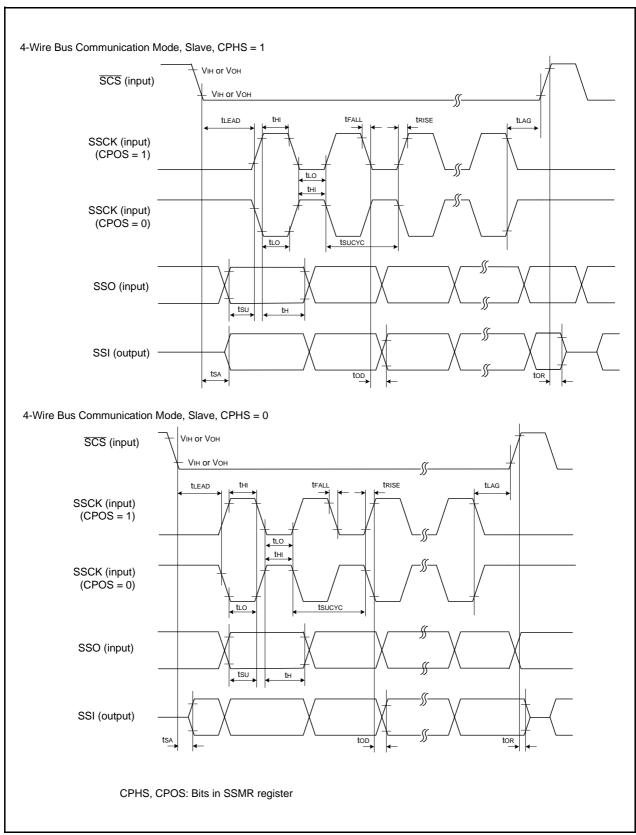


Figure 5.5 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

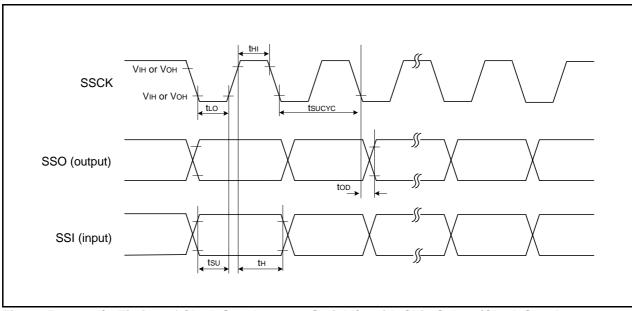


Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.17 Electrical Characteristics (3) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition	Standard			Unit	
Symbol			Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	25	75	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4.0	-	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	2.2	_	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.8	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.2	_	μА

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.18 XIN Input, XCIN Input

Symbol	Parameter	Stan	Unit	
	Faranetei	Min.	Max.	Offic
tc(XIN)	XIN input cycle time	50	-	ns
twh(xin)	XIN input "H" width	25	-	ns
twl(xin)	XIN input "L" width	25	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	=	μS
tWL(XCIN)	XCIN input "L" width	7	-	μS

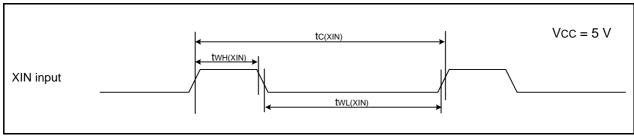


Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	100	=	ns
twh(traio)	TRAIO input "H" width	40	=	ns
twl(traio)	TRAIO input "L" width	40	=	ns

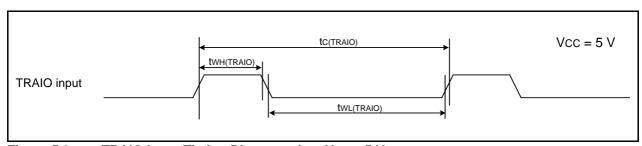


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.23 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	rameter Condition		Standard			Unit
- Syrribor	i aiainetei		Condition	Min.	Тур.	Max.	Offic
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	cc = 2.7 to 3.3 V) ggle-chip mode, tout pins are open. Clock mode High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	Low-speed on-chip oscillator on = 125 kHz		6	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	=	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	=	5	9	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	П	130	300	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	ı	30	1	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	25	70	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	I	23	55	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	=	3.8	=	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	2.0	-	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	-	μА

Table 5.38 Flash Memory (Data flash Block A, Block B) Electrical Characteristics(4)

Symbol	Parameter	Conditions		Stand	dard	Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
=	Program/erase endurance ⁽²⁾		10,000(3)	-	=	times
=	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	65	_	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	9	S
_	Block erase time (program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		_	-	97 + CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		2.7	-	5.5	V
=	Program, erase temperature		-40	-	85(8)	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	-	-	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 - However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 8. 125°C for K version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.42 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
fOCO40M	High-speed on-chip oscillator frequency temperature • supply voltage dependence	Vcc = 4.75 to 5.25 V $0^{\circ}C \leq Topr \leq 60^{\circ}C^{(2)}$	39.2	40	40.8	MHz
		Vcc = 3.0 to 5.5 V -20°C \leq Topr \leq 85°C ⁽²⁾	38.8	40	41.2	MHz
		Vcc = 3.0 to 5.5 V -40°C \leq Topr \leq 85°C ⁽²⁾	38.4	40	41.6	MHz
		Vcc = 3.0 to 5.5 V -40°C \leq Topr \leq 125°C ⁽²⁾	38	40	42	MHz
		Vcc = 2.7 to 5.5 V -40°C \leq Topr \leq 125°C(2)	37.6	40	42.4	MHz
_	Value in FRA1 register after reset		08h	-	F7h	_
=	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	=	+0.3	=	MHz
_	Oscillation stability time		-	10	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	400	-	μΑ

- 1. Vcc = 2.7 to 5.5 V, Topr = -40 to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified.
- 2. These standard values show when the FRA1 register value after reset is assumed.

Table 5.43 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		40	125	250	kHz
_	Oscillation stability time		-	10	100	μS
_	Self power consumption at oscillation	$VCC = 5.0 \text{ V}, \text{ Topr} = 25^{\circ}\text{C}$	_	15	_	μА

NOTE:

Table 5.44 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	;	Unit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and T_{opr} = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

^{1.} Vcc = 2.7 to 5.5 V, Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

Table 5.53 Electrical Characteristics (3) [Vcc = 3 V]

Symbol	Pare	ameter	Cond	ition	Si	andard		Unit
Symbol	raid	Farameter		Condition		Тур.	Max.	Offic
Vон	Output "H" voltage	Except XOUT	Iон = -1 mA		Vcc - 0.5	=	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = -50 μΑ	Vcc - 0.5	=	Vcc	V
Vol	Output "L" voltage	Except XOUT	IoL = 1 mA	•	_	-	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 50 μA	=	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXDO, RXD1, CLKO, SSI, SCL, SDA, SSO			0.1	0.3	-	V
		RESET			0.1	0.4	_	V
lін	Input "H" current	1	VI = 3 V, Vcc = 3	V	=	=	4.0	μΑ
lıL	Input "L" current		VI = 0 V, Vcc = 3	V	_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ
RfXIN	Feedback resistance	XIN			_	3.0	-	ΜΩ
VRAM	RAM hold voltage	•	During stop mode	Э	2.0	-	_	V

^{1.} Vcc = 2.7 to 3.3 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements

(Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.55 XIN Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width	40	-	ns
twl(XIN)	XIN input "L" width	40	-	ns

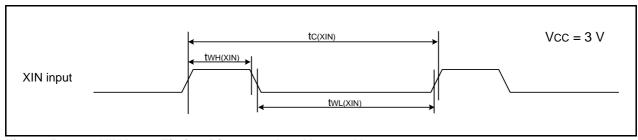


Figure 5.31 XIN Input Timing Diagram when Vcc = 3 V

Table 5.56 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	=	ns

Figure 5.32 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(CK)	CLK0 input cycle time	300	-	ns
tW(CKH)	CLK0 input "H" width	150	-	ns
tW(CKL)	CLK0 Input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	=	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

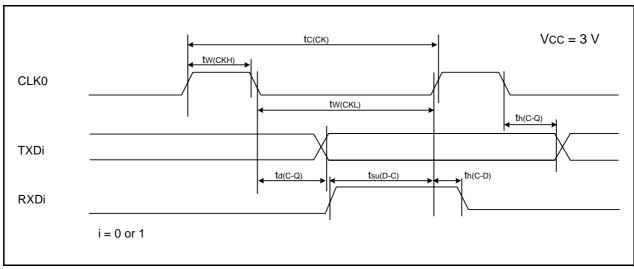


Figure 5.33 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.58 External Interrupt \overline{INTi} (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tW(INH)	INTi input "H" width	380(1)	-	ns
tW(INL)	INTi input "L" width	380(2)	_	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

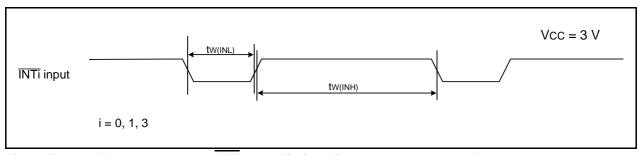


Figure 5.34 External Interrupt INTi Input Timing Diagram when Vcc = 3 V