

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21286ksp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table 1.4 Product Information for R8C/29 Group

Current of Sep. 2008

	ROM (Capacity	RAM			
Type No.	Program ROM	Data flash	Capacity	Package Type	Re	marks
R5F21292SNSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	N version	
R5F21294SNSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21292SDSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	D version	
R5F21294SDSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21294JSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	J version	
R5F21296JSP	32 Kbytes	1 Kbyte x 2	1.5 Kbyte	PLSP0020JB-A		
R5F21294KSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	K version	
R5F21296KSP	32 Kbytes	1 Kbyte x 2	1.5 Kbyte	PLSP0020JB-A		
R5F21292SNXXXSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	N version	Factory
R5F21294SNXXXSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		programming
R5F21292SDXXXSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	D version	product ⁽¹⁾
R5F21294SDXXXSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21294JXXXSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	J version	
R5F21296JXXXSP	32 Kbytes	1 Kbyte x 2	1.5 Kbyte	PLSP0020JB-A		
R5F21294KXXXSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	K version]
R5F21296KXXXSP	32 Kbytes	1 Kbyte x 2	1.5 Kbyte	PLSP0020JB-A		

NOTE:

1. The user ROM is programmed before shipment.



Figure 1.3 Type Number, Memory Size, and Package of R8C/29 Group

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments (Top View).

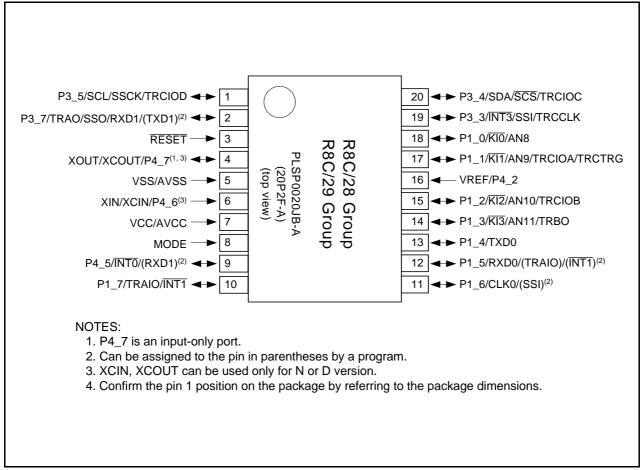


Figure 1.4 Pin Assignments (Top View)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

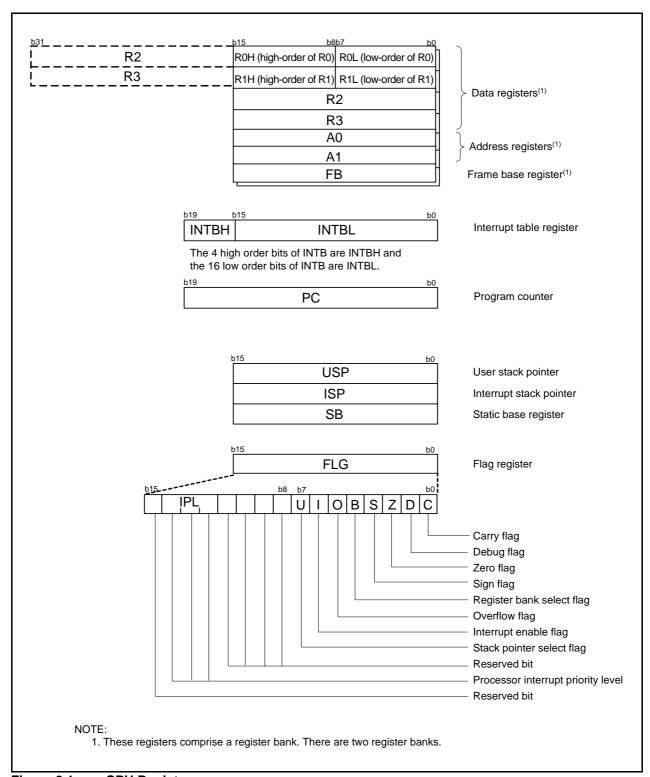


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

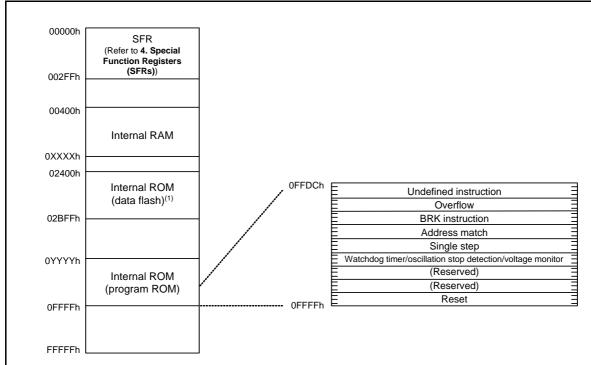
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3.2 R8C/29 Group

Figure 3.2 is a Memory Map of R8C/29 Group. The R8C/29 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

- 1. Data flash block A (1 Kbyte) and B (1 Kbyte) are shown.
- 2. The blank regions are reserved. Do not access locations in these regions.

Post Month on	Inte	rnal ROM	Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F21292SNSP, R5F21292SDSP, R5F21292SNXXXSP, R5F21292SDXXXSP	8 Kbytes	0E000h	512 bytes	005FFh	
R5F21294SNSP, R5F21294SDSP, R5F21294JSP, R5F21294KSP, R5F21294SNXXXSP, R5F21294SDXXXSP, R5F21294JXXXSP, R5F21294KXXXSP	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F21296JSP, R5F21296KSP, R5F21296JXXXSP, R5F21296KXXXSP	32 Kbytes	08000h	1.5 Kbytes	009FFh	

Figure 3.2 Memory Map of R8C/29 Group

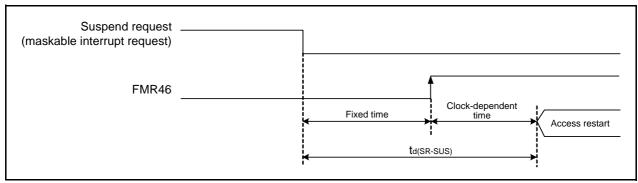


Figure 5.2 Time delay until Suspend

Table 5.6 **Voltage Detection 0 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol Parameter		Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
=	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	=	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		_	40	_	μS
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	=	100	μS

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		II	=	100	μS

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- $2. \ \ \text{Time until the voltage monitor 2 interrupt request is generated after the voltage passes V_{det2}.}$
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Dorometer	Condition		Standard		Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 4.75 to 5.25 V	39.2	40	40.8	MHz
	temperature • supply voltage dependence	$0^{\circ}C \leq T_{opr} \leq 60^{\circ}C^{(2)}$				
		Vcc = 3.0 to 5.5 V	38.8	40	41.2	MHz
		-20 °C $\leq T_{opr} \leq 85$ °C(2)				
		Vcc = 3.0 to 5.5 V	38.4	40	41.6	MHz
		-40 °C \leq Topr \leq 85°C ⁽²⁾				
		Vcc = 2.7 to 5.5 V	38	40	42	MHz
		-20 °C \leq Topr \leq 85°C ⁽²⁾				
		Vcc = 2.7 to 5.5 V	37.6	40	42.4	MHz
		-40 °C \leq Topr \leq 85°C(2)				
		Vcc = 2.2 to 5.5 V	35.2	40	44.8	MHz
		$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(3)}$				
		Vcc = 2.2 to 5.5 V	34	40	46	MHz
		-40 °C \leq Topr \leq 85°C(3)				
		$Vcc = 5.0 V \pm 10\%$	38.8	40	40.8	MHz
		$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		$Vcc = 5.0 V \pm 10\%$	38.4	40	40.8	MHz
		-40 °C \leq Topr \leq 85°C(2)				
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864	-	MHz
	correction value in FRA7 register is written to	Vcc = 3.0 to 5.5 V	-3%	-	3%	%
	FRA1 register ⁽⁴⁾	-20 °C \leq Topr \leq 85°C				
_	Value in FRA1 register after reset		08h ⁽³⁾	-	F7h ⁽³⁾	-
-	Oscillation frequency adjustment unit of high-	Adjust FRA1 register	_	+0.3	_	MHz
	speed on-chip oscillator	(value after reset) to -1				
	Oscillation stability time			10	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μА

NOTES:

- 1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. These standard values show when the FRA1 register value after reset is assumed.
- 3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.
- 4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
	Farameter	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
_	Oscillation stability time		-	10	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μА

NOTE:

1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		=	=	150	μS

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.15 Electrical Characteristics (1) [Vcc = 5 V]

Symbol	Parameter		Conditio	n	S	tandard		Unit
Symbol	Fai	ameter	Conditio	111	Min.	Тур.	Max.	Ullit
Vон	Output "H" voltage	Except P1_0 to P1_7,	Iон = -5 mA	IOH = -5 mA		-	Vcc	V
		XOUT	Іон = -200 μА		Vcc - 0.5	-	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -20 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V
		Drive capacity LOW	IOH = -500 μA	Vcc - 2.0	_	Vcc	V	
Vol	Output "L" voltage	Except P1_0 to P1_7,	IoL = 5 mA		=	-	2.0	V
		XOUT	IoL = 200 μA		_	_	0.45	V
		P1_0 to P1_7	Drive capacity HIGH	IoL = 20 mA	_	_	2.0	V
			Drive capacity LOW	IoL = 5 mA	_	_	2.0	V
		XOUT	Drive capacity HIGH	IoL = 1 mA	_	_	2.0	V
			Drive capacity LOW	IoL = 500 μA	_	_	2.0	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXDO, RXD1, CLKO, SSI, SCL, SDA, SSO			0.1	0.5	-	V
		RESET			0.1	1.0	-	V
Iн	Input "H" current		VI = 5 V, Vcc = 5V		=	-	5.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 5V		=	-	-5.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5V		30	50	167	kΩ
RfXIN	Feedback resistance	XIN			-	1.0	-	МΩ
RfXCIN	Feedback resistance	XCIN			-	18	-	MΩ
VRAM	RAM hold voltage	•	During stop mode		1.8	-	-	V

^{1.} Vcc = 4.2 to 5.5 V at $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.17 Electrical Characteristics (3) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Comple ed	Donomoton	Condition			Standard	b	Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	25	75	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4.0	-	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	2.2	-	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.8	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	=	μА

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.18 XIN Input, XCIN Input

Symbol	Parameter	Stan	Unit	
Symbol	Faidilletei		Max.	Offic
tc(XIN)	XIN input cycle time	50	-	ns
twh(xin)	XIN input "H" width	25	-	ns
twl(XIN)	XIN input "L" width	25	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	=	μS
twl(xcin)	XCIN input "L" width	7	-	μS

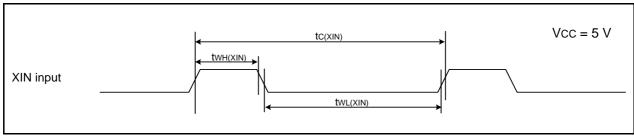


Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol	Parameter		Standard		
	Falametel	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	=	ns	
tWH(TRAIO)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	=	ns	

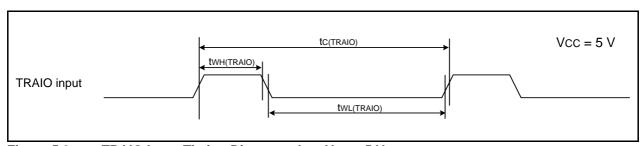


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.28 Electrical Characteristics (5) [VCC = 2.2 V]

Symbol	Doro	um atar	Cons	dition	S	Standard		Unit
Symbol	Parameter		Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Iон = -1 mA	Iон = -1 mA			Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -2 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	=	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity LOW	IOH = -50 μA	Vcc - 0.5	=	Vcc	V
VoL	Output "L" voltage	Except P1_0 to P1_7, XOUT	IoL = 1 mA		=	=	0.5	V
		P1_0 to P1_7	Drive capacity HIGH	IOL = 2 mA	_	_	0.5	V
			Drive capacity LOW	IoL = 1 mA	=	=	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	=	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXDO, RXD1, CLKO, SSI, SCL, SDA, SSO			0.05	0.3	-	V
		RESET			0.05	0.15	-	V
Іін	Input "H" current	I.	VI = 2.2 V		=	_	4.0	μΑ
lıL	Input "L" current		VI = 0 V		_	_	-4.0	μА
RPULLUP	Pull-up resistance		VI = 0 V		100	200	600	kΩ
RfXIN	Feedback resistance	XIN			=	5	=	MΩ
RfXCIN	Feedback resistance	XCIN			_	35	_	MΩ
VRAM	RAM hold voltage		During stop mod	е	1.8	-	_	V

^{1.} Vcc = 2.2 V at $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), f(XIN) = 5 MHz, unless otherwise specified.

Timing requirements

(Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.30 XIN Input, XCIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	200	-	ns	
twh(xin)	XIN input "H" width	90	-	ns	
tWL(XIN)	XIN input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

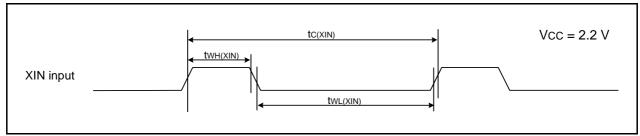


Figure 5.16 XIN Input and XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.31 TRAIO Input

Symbol Parameter	Stan	Unit		
	Falametel		Max.	Offic
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	-	ns
twl(traio)	TRAIO input "L" width	200	=	ns

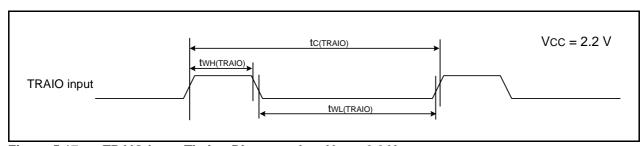


Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

5.2 J, K Version

Table 5.34 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	-40 °C ≤ Topr ≤ 85 °C	300	mW
		$85 \text{ °C} \leq \text{Topr} \leq 125 \text{ °C}$	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.35 Recommended Operating Conditions

Symbol	Dow	ameter	Conditions		Standard		Unit
Symbol	Para	ameter	Conditions	Min.	Тур.	Max.	Onit
Vcc/AVcc	Supply voltage			2.7	_	5.5	V
Vss/AVss	Supply voltage			-	0	_	V
VIH	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	_	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	=	-60	mA
IOH(peak)	Peak output "H" current			-	=	-10	mA
IOH(avg)	Average output "H" current			-	=	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	=	60	mA
IOL(peak)	Peak output "L" currents			-	=	10	mA
IOL(avg)	Average output "L" current			_	-	5	mA
f(XIN)	XIN clock input oscillation frequency		3.0 V ≤ Vcc ≤ 5.5 V (other than K version)	0	=	20	MHz
			3.0 V ≤ Vcc ≤ 5.5 V (K version)	0	-	16	MHz
			2.7 V ≤ Vcc < 3.0 V	0	-	10	MHz
=	System clock	OCD2 = 0 XIN clock selected	3.0 V ≤ Vcc ≤ 5.5 V (other than K version)	0	=	20	MHz
			3.0 V ≤ Vcc ≤ 5.5 V (K version)	0	_	16	MHz
			2.7 V ≤ Vcc < 3.0 V	0	_	10	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	_	kHz
			FRA01 = 1 High-speed on-chip oscillator clock selected (other than K version)	-	=	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected	-	=	10	MHz

- 1. Vcc = 2.7 to 5.5 V at Topr = -40 to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.

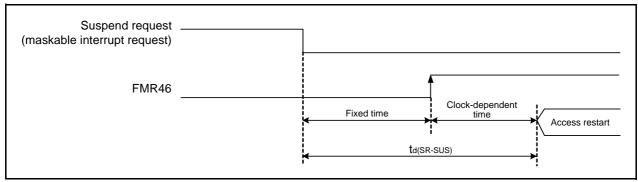


Figure 5.21 Time delay until Suspend

Table 5.39 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faranielei	Condition	Min.	Тур.		Uill
Vdet1	Voltage detection level ^(2, 4)		2.70	2.85	3.0	V
td(Vdet1-A)	Voltage monitor 1 reset generation time ⁽⁵⁾		_	40	200	μS
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	0.6	=	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	=	100	μS
Vccmin	MCU operating voltage minimum value		2.70	_	_	V

NOTES:

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes V_{det1} when V_{CC} falls. When using the digital filter, its sampling time is added to t_d(V_{det1}-A). When using the voltage monitor 1 reset, maintain this time until V_{CC} = 2.0 V after the voltage passes V_{det1} when the power supply falls.

Table 5.40 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max. 3.9 200 - 100	Offic
Vdet2	Voltage detection level ⁽²⁾		3.3	3.6	3.9	V
td(Vdet2-A)	Voltage monitor 2 reset/interrupt request generation time ^(3., 5)		=	40	200	μS
=	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	=	0.6	_	μА
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		=	=	100	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1
- 3. Time until the voltage monitor 2 reset/interrupt request is generated after the voltage passes Vdet2.
- 4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.

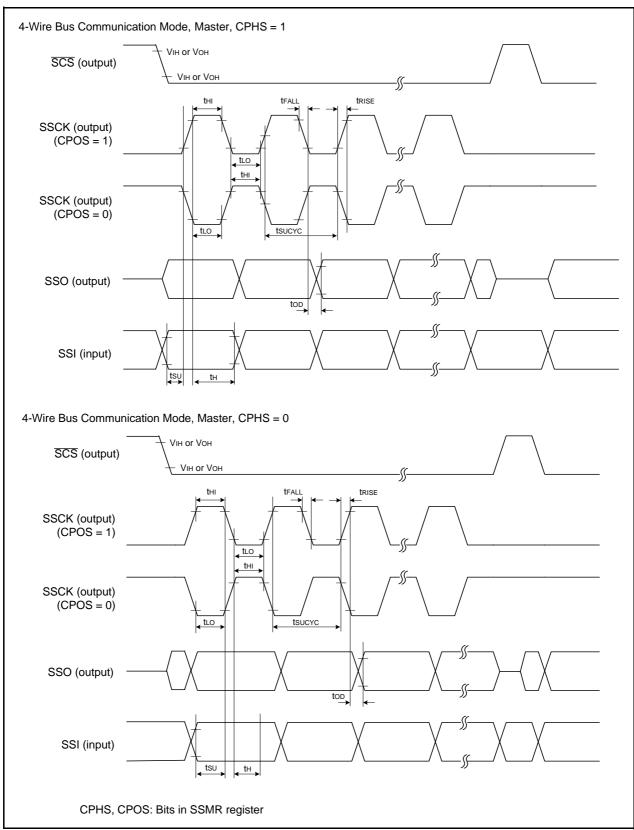


Figure 5.23 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

Table 5.51 Serial Interface

Symbol	Parameter		Standard		
	Falanetei	Min.	Max.	Unit	
tc(CK)	CLK0 input cycle time	200	-	ns	
tW(CKH)	CLK0 input "H" width	100	-	ns	
tW(CKL)	CLK0 input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

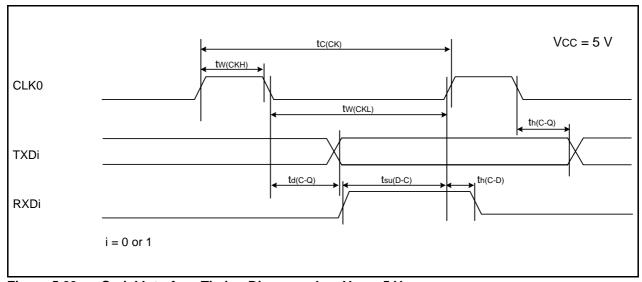


Figure 5.29 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.52 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
	i didiffeter	Min.	Max.	Unit	
tW(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns	
tW(INL)	INTi input "L" width	250 ⁽²⁾	ı	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

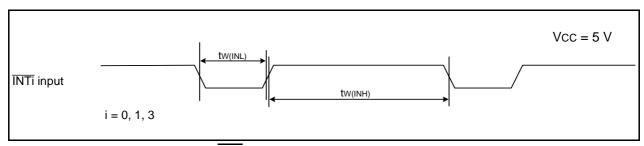


Figure 5.30 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Table 5.54 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

Symbol	Parameter	er Condition		Standard			Unit
Syllibol	Parameter		Condition	Min.	Тур.	Max.	UTIIL
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	-	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	9	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	I	130	300	μА
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μА	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	55	μА	
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μА
			XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	3.8	_	μА

Symbol	Parameter	Standard		Unit	
	Faidilletei		Max.		
tc(CK)	CLK0 input cycle time 300 -				
tW(CKH)	CLK0 input "H" width	150	-	ns	
tW(CKL)	CLK0 Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	=	80	ns	
th(C-Q)	TXDi hold time		-	ns	
tsu(D-C)	RXDi input setup time	70	=	ns	
th(C-D)	RXDi input hold time		-	ns	

i = 0 or 1

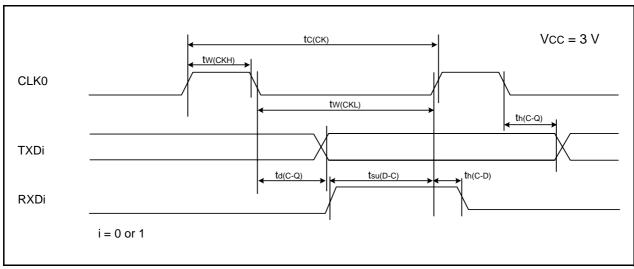


Figure 5.33 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.58 External Interrupt \overline{INTi} (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(INH)	INTi input "H" width	380(1)	-	ns
tw(INL)	INTi input "L" width	380(2)	_	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

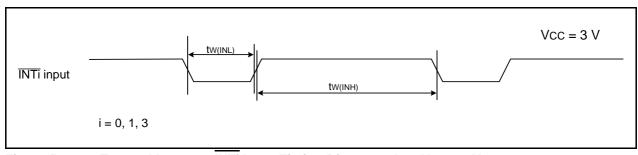


Figure 5.34 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Rev.	Date	Description		
		Page	Summary	
1.00 Nov 08, 2006		15	Table 4.1; • "0000h to 003Fh" → "0000h to 002Fh" revised • 000Fh: "000XXXXXb" → "00X11111b" revised • 001Ch: "00h" → "00h, 10000000b" revised • 0029h: "High-Speed On-Chip Oscillator Control Register 4, FRA4, When shipping" added • 002Bh: "High-Speed On-Chip Oscillator Control Register 6, FRA6, When shipping" added • NOTE2 revised, NOTE3 added	
		16	Table 4.2; "0040h to 007Fh" → "0030h to 007Fh" revised	
		18	Table 4.4; 00E1h, 00E5h, 00E8h "XXh" → "00h" revised	
		22	Table 5.2 revised	
		23	Figure 5.1 figure title revised	
		24	Table 5.4 revised	
		25	Table 5.5 revised	
		26	Figure 5.2 figure title revised and Table 5.7 NOTE4 added	
		27	Table 5.9 revised, Figure 5.3 revised	
		28	Table 5.10, Table 5.11revised	
		34	Table 5.15 revised	
		35	Table 5.16 revised	
		36	Table 5.17 revised	
		39	Table 5.22 revised	
		40	Table 5.23 revised	
		44	Table 5.29 revised	
		47	5.2 "J and K versions are under developmentnotice." added Table 5.34, Table 5.35 revised	
		48	Table 5.36 revised, Figure 5.20 figure title revised	
		51	Figure 5.21 figure title revised	
		52	Table 5.41, Figure 5.22 revised	
		53	Table 5.42, Table 5.43 revised	
		59	Table 5.47 revised	
		60	Table 5.48 revised	
		63	Table 5.53 revised	
		64	Table 5.54 revised	
		67	Package Dimensions; "Diagrams showing the latestwebsite." added	
1.10	May 17, 2007	2	Table 1.1 revised	
		3	Table 1.2 revised	
		5	Table 1.3 and Figure 1.2 revised	
		6	Table 1.4 and Figure 1.3 revised	
		7	Figure 1.4 NOTE4 added	