E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08sg16e1mtl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addendum for Revision 8.0

1 Addendum for Revision 8.0

Table 1. MC9S08SG32 Rev. 1 Addendum

Location	Description								
Chapter "Memory"/ Section "MC9S08SG32 Series Memory Map"/Figure 4-1.		C9S08SG32/MC9S08SG16 lemented Bytes" from "26,53		for device MC9S08SG16 cha	ange the				
MC9S08SG32/MC9S08SG16 Memory Map/Page 39	0x0000 0x007F 0x0080	DIRECT PAGE REGISTERS	0x0000 0x007F 0x0080	DIRECT PAGE REGISTERS					
		RAM 1024 BYTES		RAM 1024 BYTES					
	0x047F 0x0480 0x17FF 0x1800	UNIMPLEMENTED 4992 BYTES	0x047F 0x0480 0x17FF 0x1800	UNIMPLEMENTED 4992 BYTES					
	0x185F 0x185F 0x1860	HIGH PAGE REGISTERS	0x185F 0x1860	HIGH PAGE REGISTERS					
	0x7FFF	UNIMPLEMENTED 26,528 BYTES	0x7FFF	UNIMPLEMENTED 26,528 BYTES					
	0x8000		0x8000	UNIMPLEMENTED 16,384 BYTES					
		FLASH 32768 BYTES	0xBFFF 0xC000						
				FLASH 16,384 BYTES					
	0xFFFF	MC9S08SG32	0xFFFF	MC9S08SG16					

Section Number

Title

	4.5.4	Burst Program Execution	51
		Access Errors	
	4.5.6	FLASH Block Protection	53
	4.5.7	Vector Redirection	54
4.6	Security	7	54
4.7	FLASH	Registers and Control Bits	56
	4.7.1	FLASH Clock Divider Register (FCDIV)	56
	4.7.2	FLASH Options Register (FOPT and NVOPT)	57
	4.7.3	FLASH Configuration Register (FCNFG)	58
	4.7.4	FLASH Protection Register (FPROT and NVPROT)	58
	4.7.5	FLASH Status Register (FSTAT)	59
	4.7.6	FLASH Command Register (FCMD)	60

Chapter 5 Resets, Interrupts, and General System Control

5.1	Introdu	ction	61
5.2	Feature	S	61
5.3	MCU R	eset	61
5.4	Compu	ter Operating Properly (COP) Watchdog	62
5.5	_	ots	
	5.5.1	Interrupt Stack Frame	64
	5.5.2	Interrupt Vectors, Sources, and Local Masks	65
5.6	Low-Vo	oltage Detect (LVD) System	67
		Power-On Reset Operation	
	5.6.2	Low-Voltage Detection (LVD) Reset Operation	67
	5.6.3	Low-Voltage Warning (LVW) Interrupt Operation	67
5.7	Reset, I	nterrupt, and System Control Registers and Control Bits	67
	5.7.1	System Reset Status Register (SRS)	68
	5.7.2	System Background Debug Force Reset Register (SBDFR)	69
	5.7.3	System Options Register 1 (SOPT1)	70
	5.7.4	System Options Register 2 (SOPT2)	
	5.7.5	System Device Identification Register (SDIDH, SDIDL)	72
	5.7.6	System Power Management Status and Control 1 Register (SPMSC1)	
	5.7.7	System Power Management Status and Control 2 Register (SPMSC2)	74

Chapter 6 Parallel Input/Output Control

6.1	Port Da	ta and Data Direction	. 77
6.2	Pull-up,	Slew Rate, and Drive Strength	. 78
6.3	Ganged	Output	. 79
6.4	Pin Inte	rrupts	. 80
		Edge-Only Sensitivity	

Section Number

Title

Page

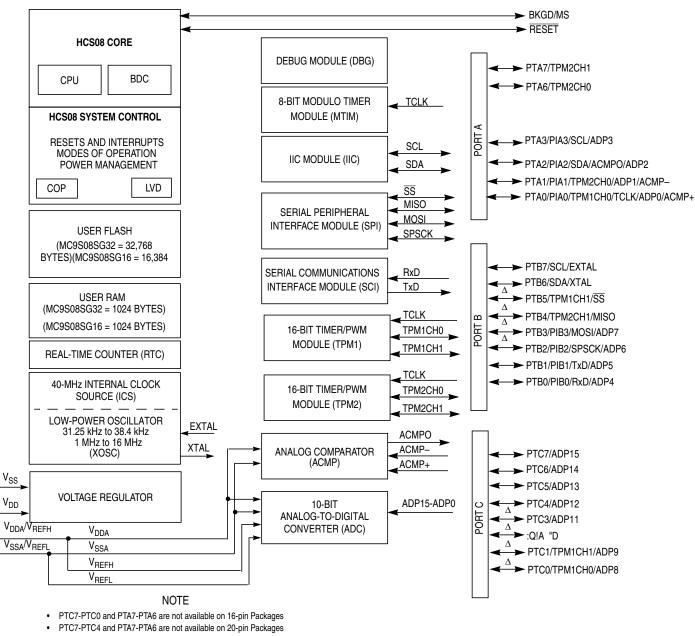
17.3	On-Chip	Debug System (DBG)	279
	17.3.1	Comparators A and B	279
	17.3.2	Bus Capture Information and FIFO Operation	279
	17.3.3	Change-of-Flow Information	280
	17.3.4	Tag vs. Force Breakpoints and Triggers	280
	17.3.5	Trigger Modes	281
	17.3.6	Hardware Breakpoints	283
17.4	Register	Definition	283
	17.4.1	BDC Registers and Control Bits	283
	17.4.2	System Background Debug Force Reset Register (SBDFR)	285
	17.4.3	DBG Registers and Control Bits	286

Appendix A Electrical Characteristics

A.1	Introduction	291
A.2	Parameter Classification	291
A.3	Absolute Maximum Ratings	291
A.4	Thermal Characteristics	293
A.5	ESD Protection and Latch-Up Immunity	295
A.6	DC Characteristics	296
A.7	Supply Current Characteristics	302
A.8	External Oscillator (XOSC) Characteristics	306
A.9	Internal Clock Source (ICS) Characteristics	308
A.10	Analog Comparator (ACMP) Electricals	309
A.11	ADC Characteristics	310
A.12	AC Characteristics	316
	A.12.1 Control Timing	316
	A.12.2 TPM/MTIM Module Timing	318
	A.12.3 SPI	319
A.13	Flash Specifications	323
A.14	EMC Performance	324
	A.14.1 Radiated Emissions	324

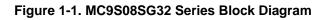
Appendix B

Ordering Information and Mechanical Drawings


B .1	Ordering Information	
	B.1.1 Device Numbering Scheme	
B.2	Package Information and Mechanical Drawings	

Chapter 1 Device Overview

1.2 MCU Block Diagram


The block diagram in Figure 1-1 shows the structure of the MC9S08SG32 Series MCU.

• For the 16-pin and 20-pin packages: V_{DDA}/V_{REFH} and V_{SSA}/V_{REFL} are

double bonded to V_{DD} and V_{SS} respectively.

 Δ = Pin can be enabled as part of the ganged output drive feature

MC9S08SG32 Data Sheet, Rev. 8

The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either background debug mode or stop mode and begins from zero upon exit from background debug mode or stop mode.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on a pin interrupt or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not recommended for anyone

Source	One off	ess de		es	Cyc-by-Cyc	Affecton CCR		
Form	Operation	Address Mode	Object Code	Cycles	Details	V 1 1 H	INZC	
BCC rel	Branch if Carry Bit Clear (if C = 0)	REL	24 rr	3	qqq	- 1 1 -		
		DIR (b0) DIR (b1)	11 dd	5 5	rfwpp			
		DIR (b1)	13 dd 15 dd	5	rfwpp rfwpp			
	Clear Bit n in Memory	DIR (b2)	15 dd 17 dd	5	rfwpp			
BCLR n,opr8a	$(Mn \leftarrow 0)$	DIR (b3)	19 dd	5	rfwpp	- 1 1 -		
		DIR (b5)	19 dd 1B dd	5	rfwpp			
		DIR (b6)	1D dd 1D dd	5	rfwpp			
		DIR (b7)	1F dd	5	rfwpp			
BCS rel	Branch if Carry Bit Set (if C = 1)(Same as BLO)	REL	25 rr	3	qqq	- 1 1 -		
BEQ rel	Branch if Equal (if Z = 1)	REL	27 rr	3	qqq	- 1 1 -		
BGE rel	Branch if Greater Than or Equal To (if $N \oplus V = 0$) (Signed)	REL	90 rr	3	ppp	- 1 1 -		
BGND	Enter active background if ENBDM=1 Waits for and processes BDM commands until GO, TRACE1, or TAGGO	INH	82	5+	fpppp	- 1 1 -		
BGT rel	Branch if Greater Than (if $Z \mid (N \oplus V) = 0$) (Signed)	REL	92 rr	3	qqq	- 1 1 -		
BHCC rel	Branch if Half Carry Bit Clear (if H = 0)	REL	28 rr	3	ppp	- 1 1 -		
BHCS rel	Branch if Half Carry Bit Set (if H = 1)	REL	29 rr	3	ppp	- 1 1 -		
BHI rel	Branch if Higher (if C Z = 0)	REL	22 rr	3	qqq	- 1 1 -		
BHS rel	Branch if Higher or Same (if C = 0) (Same as BCC)	REL	24 rr	3	qqq	- 1 1 -		
BIH rel	Branch if IRQ Pin High (if IRQ pin = 1)	REL	2F rr	3	ppp	- 1 1 -		
BIL rel	Branch if IRQ Pin Low (if IRQ pin = 0)	REL	2E rr	3	qqq	- 1 1 -		
BIT #opr8i		IMM	A5 ii	2	pp			
BIT opr8a		DIR	B5 dd	3	rpp			
BIT opr16a	Dit Teet	EXT	C5 hh 11	4	prpp			
BIT oprx16,X	Bit Test (A) & (M)(CCR Updated but Operands Not	IX2	D5 ee ff	4	prpp	011-	↑ ↑	
BIT oprx8,X	Changed)	IX1	E5 ff	3	rpp		- + + -	
BIT ,X	Changed)	IX	F5	3	rfp			
BIT oprx16,SP		SP2	9E D5 ee ff	5	pprpp			
BIT oprx8,SP		SP1	9E E5 ff	4	prpp			
BLE rel	Branch if Less Than or Equal To (if $Z \mid (N \oplus V) = 1$) (Signed)	REL	93 rr	3	qqq	- 1 1 -		
BLO rel	Branch if Lower (if $C = 1$) (Same as BCS)	REL	25 rr	3	qqq	- 1 1 -		
BLS rel	Branch if Lower or Same (if $C \mid Z = 1$)	REL	23 rr	3	qqq	- 1 1 -		
BLT rel	Branch if Less Than (if $N \oplus V = 1$) (Signed)	REL	91 rr	3	qqq	- 1 1 -		
BMC rel	Branch if Interrupt Mask Clear (if I = 0)	REL	2C rr	3	qqq	- 1 1 -		
BMI <i>rel</i>	Branch if Minus (if N = 1)	REL	2B rr	3	qqq	- 1 1 -		
BMS rel	Branch if Interrupt Mask Set (if I = 1)	REL	2D rr	3	qqq	- 1 1 -		
BNE rel	Branch if Not Equal (if $Z = 0$)	REL	26 rr	3	qqq	- 1 1 -		

Table 7-2. Instruction Set Summary (Sheet 2 of 9)

	Table 7-3. Opcode Map (Sneet 1 of 2)														
-	ipulation	Branch	Read-Modify-Write					Control Register/Memory							
00 5	10 5	20 3	30 5	40 1	50 1	60 5	70 4	80 9	BGE	A0 2	B0 3	C0 4	D0 4	E0 3	F0 3
BRSET0	BSET0	BRA	NEG	NEGA	NEGX	NEG	NEG	RTI		SUB	SUB	SUB	SUB	SUB	SUB
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
01 5	11 5	21 3	31 5	41 4	51 4	61 5	71 5	81 6	BLT	A1 2	B1 3	C1 4	D1 4	E1 3	F1 3
BRCLR0	BCLR0	BRN	CBEQ	CBEQA	CBEQX	CBEQ	CBEQ	RTS		CMP	CMP	CMP	CMP	CMP	CMP
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
02 5	12 5	22 3	32 5	42 5	52 6	62 1	72 1	82 5+	BGT	A2 2	B2 3	C2 4	D2 4	E2 3	F2 3
BRSET1	BSET1	BHI	LDHX	MUL	DIV	NSA	DAA	BGND		SBC	SBC	SBC	SBC	SBC	SBC
3 DIR	2 DIR	2 REL	3 EXT	1 INH	1 INH	1 INH	1 INH	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 4	83 11	BLE	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3
BRCLR1	BCLR1	BLS	COM	COMA	COMX	COM	COM	SWI		CPX	CPX	CPX	CPX	CPX	CPX
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	TXS	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3
BRSET2	BSET2	BCC	LSR	LSRA	LSRX	LSR	LSR	TAP		AND	AND	AND	AND	AND	AND
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	95 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2	BCLR2	BCS	STHX	LDHX	LDHX	CPHX	CPHX	TPA	TSX	BIT	BIT	BIT	BIT	BIT	BIT
3 DIR	2 DIR	2 REL	2 DIR	3 IMM	2 DIR	3 IMM	2 DIR	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
06 5	16 5	26 3	36 5	46 1	56 1	66 5	76 4	86 3	STHX	A6 2	B6 3	C6 4	D6 4	E6 3	F6 3
BRSET3	BSET3	BNE	ROR	RORA	RORX	ROR	ROR	PULA		LDA	LDA	LDA	LDA	LDA	LDA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 4	87 2	TAX	A7 2	B7 3	C7 4	D7 4	E7 3	F7 2
BRCLR3	BCLR3	BEQ	ASR	ASRA	ASRX	ASR	ASR	PSHA		AIS	STA	STA	STA	STA	STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
08 5 BRSET4 3 DIR	18 5 BSET4 2 DIR	28 3 BHCC 2 REL	38 5 LSL 2 DIR	48 1 LSLA 1 INH	58 1 LSLX 1 INH	68 5 LSL 2 IX1	78 4 LSL 1 IX	88 3 PULX 1 INH	CLC	A8 2 EOR 2 IMM	B8 3 EOR	C8 4 EOR 3 EXT	D8 4 EOR 3 IX2	E8 3 EOR 2 IX1	F8 3 EOR 1 IX
09 5	19 5	29 3	39 5	49 1	59 1	69 5	79 4	89 2	⁹⁹ SEC ¹	A9 2	B9 3	C9 4	D9 4	E9 3	F9 3
BRCLR4	BCLR4	BHCS	ROL	ROLA	ROLX	ROL	ROL	PSHX		ADC	ADC	ADC	ADC	ADC	ADC
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0A 5	1A 5	2A 3	3A 5	4A 1	5A 1	6A 5	7A 4	8A 3	9A 1	ORA	BA 3	CA 4	DA 4	EA 3	FA 3
BRSET5	BSET5	BPL	DEC	DECA	DECX	DEC	DEC	PULH	CLI		ORA	ORA	ORA	ORA	ORA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0B 5	1B 5	2B 3	3B 7	4B 4	5B 4	6B 7	7B 6	8B 2	SEI	AB 2	BB 3	CB 4	DB 4	EB 3	FB 3
BRCLR5	BCLR5	BMI	DBNZ	DBNZA	DBNZX	DBNZ	DBNZ	PSHH		ADD	ADD	ADD	ADD	ADD	ADD
3 DIR	2 DIR	2 REL	3 DIR	2 INH	2 INH	3 IX1	2 IX	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0C 5	1C 5	2C 3	3C 5	4C 1	5C 1	6C 5	7C 4	8C 1	9C 1		BC 3	CC 4	DC 4	EC 3	FC 3
BRSET6	BSET6	BMC	INC	INCA	INCX	INC	INC	CLRH	RSP		JMP	JMP	JMP	JMP	JMP
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0D 5 BRCLR6 3 DIR		2D 3 BMS 2 REL	3D 4 TST 2 DIR	4D 1 TSTA 1 INH	5D 1 TSTX 1 INH	6D 4 TST 2 IX1	7D 3 TST 1 IX		9D 1 NOP 1 INH	BSR	BD 5 JSR 2 DIR	CD 6 JSR 3 EXT	DD 6 JSR 3 IX2	ED 5 JSR 2 IX1	FD 5 JSR 1 IX
0E 5 BRSET7 3 DIR	1E 5 BSET7 2 DIR	2E 3 BIL 2 REL	3E 6 CPHX 3 EXT	4E 5 MOV 3 DD	5E 5 MOV 2 DIX+	6E 4 MOV 3 IMD	7E 5 MOV 2 IX+D	8E 2+ STOP 1 INH	9E Page 2	AE 2 LDX 2 IMM	BE 3 LDX 2 DIR	CE 4 LDX 3 EXT	DE 4 LDX 3 IX2	EE 3 LDX 2 IX1	FE 3 LDX 1 IX
0F 5		2F 3	3F 5	4F 1	5F 1	6F 5	7F 4	8F 2+	9F 1	AF 2	BF 3	CF 4	DF 4	EF 3	FF 2
BRCLR7		BIH	CLR	CLRA	CLRX	CLR	CLR	WAIT	TXA	AIX	STX	STX	STX	STX	STX
3 DIR		2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX

Table 7-3. Opcode Map (Sheet 1 of 2)

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

REL IX IX1 IX2 IMD DIX+ Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Opcode in Hexadecimal F0 3 SUB Number of Bytes 1 IX HCS08 Cycles Instruction Mnemonic Addressing Mode

ADICLK	Selected Clock Source						
00	Bus clock						
01	Bus clock divided by 2						
10	Alternate clock (ALTCLK)						
11	Asynchronous clock (ADACK)						

Table 9-9. Input Clock Select

9.3.8 Pin Control 1 Register (APCTL1)

The pin control registers disable the digital interface to the associated MCU pins used as analog inputs to reduce digital noise and improve conversion accuracy. APCTL1 controls the pins associated with channels 0–7 of the ADC module.

Some MCUs may not use all bits implemented in this register. Bits in this register that do not have associated external analog inputs have no control function. Consult the ADC channel assignment in the module introduction.

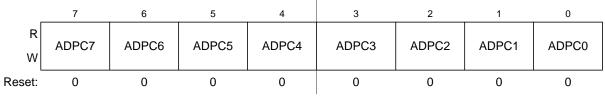


Figure 9-10. Pin Control 1 Register (APCTL1)

Field	Description
7 ADPC7	ADC Pin Control 7 — ADPC7 controls the pin associated with channel AD7. 0 AD7 pin I/O control enabled 1 AD7 pin I/O control disabled
6 ADPC6	ADC Pin Control 6 — ADPC6 controls the pin associated with channel AD6. 0 AD6 pin I/O control enabled 1 AD6 pin I/O control disabled
5 ADPC5	 ADC Pin Control 5 — ADPC5 controls the pin associated with channel AD5. 0 AD5 pin I/O control enabled 1 AD5 pin I/O control disabled
4 ADPC4	 ADC Pin Control 4 — ADPC4 controls the pin associated with channel AD4. 0 AD4 pin I/O control enabled 1 AD4 pin I/O control disabled
3 ADPC3	 ADC Pin Control 3 — ADPC3 controls the pin associated with channel AD3. 0 AD3 pin I/O control enabled 1 AD3 pin I/O control disabled
2 ADPC2	ADC Pin Control 2 — ADPC2 controls the pin associated with channel AD2. 0 AD2 pin I/O control enabled 1 AD2 pin I/O control disabled

Chapter 9 Analog-to-Digital Converter (S08ADC10V1)

9.4.7.2 Stop3 Mode With ADACK Enabled

If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For guaranteed ADC operation, the MCU's voltage regulator must remain active during stop3 mode. Consult the module introduction for configuration information for this MCU.

If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous conversions are enabled.

A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from stop3 mode if the ADC interrupt is enabled (AIEN = 1).

NOTE

The ADC module can wake the system from low-power stop and cause the MCU to begin consuming run-level currents without generating a system level interrupt. To prevent this scenario, software should ensure the data transfer blocking mechanism (discussed in Section 9.4.4.2, "Completing Conversions) is cleared when entering stop3 and continuing ADC conversions.

9.4.8 MCU Stop2 Mode Operation

The ADC module is automatically disabled when the MCU enters either stop2 mode. All module registers contain their reset values following exit from stop2. Therefore, the module must be re-enabled and re-configured following exit from stop2.

9.5 Initialization Information

This section gives an example that provides some basic direction on how to initialize and configure the ADC module. You can configure the module for 8-bit or 10-bit resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. Refer to Table 9-7, Table 9-8, and Table 9-9 for information used in this example.

NOTE

Hexadecimal values designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

9.5.1 ADC Module Initialization Example

9.5.1.1 Initialization Sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is as follows:

1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio used to generate the internal clock, ADCK. This register is also used for selecting sample time and low-power configuration.

12.4 Functional Description

The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with nine selectable values. The module also contains software selectable interrupt logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register, then the counter will be in free-running mode. The counter is in modulo mode when a value other than \$00 is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to \$00, and the modulus is set to \$00. The bus clock is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256. The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active (TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from \$01 to \$FF. Reset clears the modulo value to \$00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches the modulo value. When these values match, the counter overflows to \$00 and continues counting. The MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo value to \$00. Writing to MTIMMOD while the counter is active resets the counter to \$00 and clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is reset and TOF will remain set after the second step is performed. This will prevent the second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.

14.3.5.2 Stop Mode Operation

During all stop modes, clocks to the SCI module are halted.

In stop2 mode, all SCI register data is lost and must be re-initialized upon recovery from these two stop modes. No SCI module registers are affected in stop3 mode.

The receive input active edge detect circuit is still active in stop3 mode, but not in stop2. An active edge on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).

Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted out of or received into the SCI module.

14.3.5.3 Loop Mode

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of connections in the external system, to help isolate system problems. In this mode, the transmitter output is internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a general-purpose port I/O pin.

14.3.5.4 Single-Wire Operation

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection. The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIC3 controls the direction of serial data on the TxD pin. When TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.

Chapter 15 Serial Peripheral Interface (S08SPIV3)

SPPR2:SPPR1:SPPR0	Prescaler Divisor
0:0:0	1
0:0:1	2
0:1:0	3
0:1:1	4
1:0:0	5
1:0:1	6
1:1:0	7
1:1:1	8

Table 15-5. SPI Baud Rate Prescaler Divisor

Table 15-6. SPI Baud Rate Divisor

SPR2:SPR1:SPR0	Rate Divisor
0:0:0	2
0:0:1	4
0:1:0	8
0:1:1	16
1:0:0	32
1:0:1	64
1:1:0	128
1:1:1	256

15.4.4 SPI Status Register (SPIS)

This register has three read-only status bits. Bits 6, 3, 2, 1, and 0 are not implemented and always read 0. Writes have no meaning or effect.

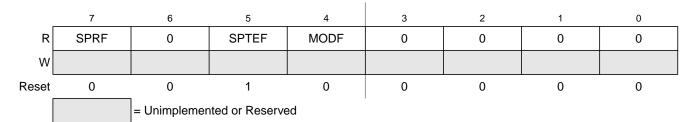


Figure 15-8. SPI Status Register (SPIS)

Chapter 15 Serial Peripheral Interface (S08SPIV3)

15.5 Functional Description

An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then writing a byte of data to the SPI data register (SPID) in the master SPI device. When the SPI shift register is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was in the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data were shifted in the MISO pin into the master's shift register. At the end of this transfer, the received data byte is moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read by reading SPID. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable (LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its \overline{SS} pin must be driven low before a transfer starts and \overline{SS} must stay low throughout the transfer. If a clock format where CPHA = 0 is selected, \overline{SS} must be driven to a logic 1 between successive transfers. If CPHA = 1, \overline{SS} may remain low between successive transfers. See Section 15.5.1, "SPI Clock Formats" for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently being shifted out, can be queued into the transmit data buffer, and a previously received character can be in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the transmit buffer has room for a new character. The SPRF flag indicates when a received character is available in the receive data buffer. The received character must be read out of the receive buffer (read SPID) before the next transfer is finished or a receive overrun error results.

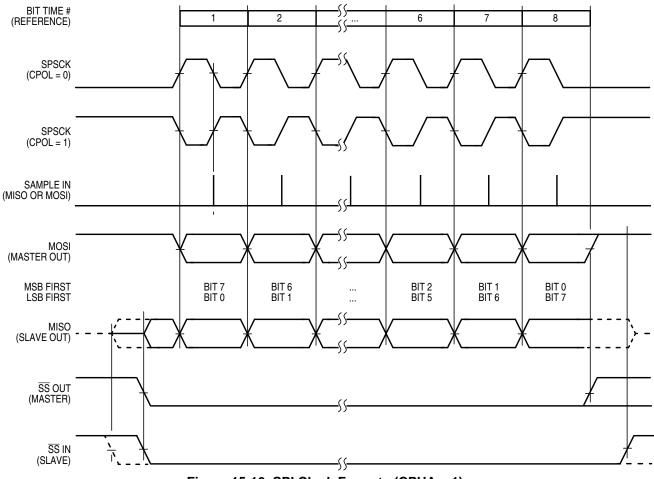
In the case of a receive overrun, the new data is lost because the receive buffer still held the previous character and was not ready to accept the new data. There is no indication for such an overrun condition so the application system designer must ensure that previous data has been read from the receive buffer before a new transfer is initiated.

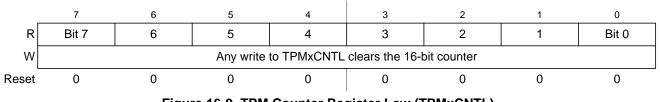
15.5.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses between two different clock phase relationships between the clock and data.

Figure 15-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output

pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low one-half SPSCK cycle before the start of the transfer and goes back high at the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.




Figure 15-10. SPI Clock Formats (CPHA = 1)

When CPHA = 1, the slave begins to drive its MISO output when \overline{SS} goes to active low, but the data is not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled, and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CHPA = 1, the slave's \overline{SS} input is not required to go to its inactive high level between transfers.

Figure 15-11 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are shown for reference with bit 1 starting as the slave is selected (\overline{SS} IN goes low), and bit 8 ends at the last SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting

Chapter 16 Timer/PWM Module (S08TPMV3)

When BDM is active, the timer counter is frozen (this is the value that will be read by user); the coherency mechanism is frozen such that the buffer latches remain in the state they were in when the BDM became active, even if one or both counter halves are read while BDM is active. This assures that if the user was in the middle of reading a 16-bit register when BDM became active, it will read the appropriate value from the other half of the 16-bit value after returning to normal execution.

In BDM mode, writing any value to TPMxSC, TPMxCNTH or TPMxCNTL registers resets the read coherency mechanism of the TPMxCNTH:L registers, regardless of the data involved in the write.

16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000 which results in a free running timer counter (modulo disabled).

Writing to either byte (TPMxMODH or TPMxMODL) latches the value into a buffer and the registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:

- If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written
- If (CLKSB:CLKSA not = 0:0), then the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF

The latching mechanism may be manually reset by writing to the TPMxSC address (whether BDM is active or not).

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register) such that the buffer latches remain in the state they were in when the BDM became active, even if one or both halves of the modulo register are written while BDM is active. Any write to the modulo registers bypasses the buffer latches and directly writes to the modulo register while BDM is active.

	7	6	5	4	3	2	1	0
R W	Bit 15	14	13	12	11	10	9	Bit 8
Reset	0	0	0	0	0	0	0	0

Figure 16-10. TPM Counter Modulo Register High (TPMxMODH)

MC9S08SG32 Data Sheet, Rev. 8

TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is a free-running counter, then this update is made when the TPM counter changes from \$FFFE to \$FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and when the TPM counter changes from TPMxMODH:L to \$0000.

— Center-Aligned PWM (Section 16.4.2.4, "Center-Aligned PWM Mode)

In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L registers with the value of their write buffer after that the both bytes were written and when the TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is a free-running counter, then this update is made when the TPM counter changes from \$FFFE to \$FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and when the TPM counter changes from TPMxMODH:L to (TPMxMODH:L - 1).

- 5. Center-Aligned PWM (Section 16.4.2.4, "Center-Aligned PWM Mode)
 - TPMxCnVH:L = TPMxMODH:L [SE110-TPM case 1] In this case, the TPM v3 produces 100% duty cycle. Instead, the TPM v2 produces 0% duty cycle.
 - TPMxCnVH:L = (TPMxMODH:L 1) [SE110-TPM case 2]

In this case, the TPM v3 produces almost 100% duty cycle. Instead, the TPM v2 produces 0% duty cycle.

- TPMxCnVH:L is changed from 0x0000 to a non-zero value [SE110-TPM case 3 and 5] In this case, the TPM v3 waits for the start of a new PWM period to begin using the new duty cycle setting. Instead, the TPM v2 changes the channel output at the middle of the current PWM period (when the count reaches 0x0000).
- TPMxCnVH:L is changed from a non-zero value to 0x0000 [SE110-TPM case 4]
 In this case, the TPM v3 finishes the current PWM period using the old duty cycle setting.
 Instead, the TPM v2 finishes the current PWM period using the new duty cycle setting.
- 6. Write to TPMxMODH:L registers in BDM mode (Section 16.3.3, "TPM Counter Modulo Registers (TPMxMODH:TPMxMODL))

In the TPM v3 a write to TPMxSC register in BDM mode clears the write coherency mechanism of TPMxMODH:L registers. Instead, in the TPM v2 this coherency mechanism is not cleared when there is a write to TPMxSC register.

7. Update of EPWM signal when CLKSB:CLKSA = 00

In the TPM v3 if CLKSB:CLKSA = 00, then the EPWM signal in the channel output is not update (it is frozen while CLKSB:CLKSA = 00). Instead, in the TPM v2 the EPWM signal is updated at the next rising edge of bus clock after a write to TPMxCnSC register.

The Figure 16-17 and Figure 16-18 show when the EPWM signals generated by TPM v2 and TPM v3 after the reset (CLKSB:CLKSA = 00) and if there is a write to TPMxCnSC register.

Chapter 17 Development Support

When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU into active background mode after reset. The specific conditions for forcing active background depend upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to indicate the start of each bit time. The external controller provides this falling edge whether data is transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed.

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.

Chapter 17 Development Support

A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for another cycle matched the value in comparator A. There can be any number of cycles after the A match and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally) must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger event occurs each time the address matches the value in comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range ($A \le Address \le B$) — A trigger occurs when the address is greater than or equal to the value in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than the value in comparator A or greater than the value in comparator B.

Appendix A Electrical Characteristics

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

#				Unit	Temp Rated	
	Rating	Symbol	Value		Standard	AEC Grade 0
1	Supply voltage	V _{DD}	-0.3 to +5.8	V	•	•
2	Maximum current into V _{DD}	I _{DD}	120	mA	•	•
3	Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V	•	•
4	Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA	•	٠
5	Storage temperature range	T _{stg}	-55 to 150	°C	•	•

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins except $\overline{\text{RESET}}$ are internally clamped to V_{SS} and V_{DD}.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

Appendix B Ordering Information and Mechanical Drawings