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Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as
practical to suppress high-frequency noise. Each pin must have a bypass capacitor for best noise
suppression.

VDDA and VSSA are the analog power supply pins for MCU. This voltage source supplies power to the
ADC module. A 0.1 μF ceramic bypass capacitor should be located as near to the MCU power pins as
practical to suppress high-frequency noise. The VREFH and VREFL pins are the voltage reference high and
voltage reference low inputs, respectively for the ADC module. For this MCU, VDDA shares the VREFH
pin and these pins are available only in the 28-pin packages. In the 16-pin and 20-pin packages, they are
double bonded to the VDD pin. For this MCU, VSSA shares the VREFL pin and these pins are available only
in the 28-pin packages. In the 16-pin and 20-pin packages, they are double bonded to the VSS pin.

2.2.2 Oscillator (XOSC)

Immediately after reset, the MCU uses an internally generated clock provided by the clock source
generator (ICS) module. For more information on the ICS, see Chapter 11, “Internal Clock Source
(S08ICSV2).”

The oscillator (XOSC) in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic
resonator. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL
input pin.

Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance
resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have
too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically
designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value
is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity and
lower values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance
which is the series combination of C1 and C2 (which are usually the same size). As a first-order
approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin
(EXTAL and XTAL).

2.2.3 RESET

RESET is a dedicated pin with open-drain drive containing an internal pull-up device. Internal power-on
reset and low-voltage reset circuitry typically make external reset circuitry unnecessary. This pin is
normally connected to the standard 6-pin background debug connector so a development system can
directly reset the MCU system. If desired, a manual external reset can be added by supplying a simple
switch to ground (pull reset pin low to force a reset).
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4.5.1 Features

Features of the FLASH memory include:

• FLASH size

— MC9S08SG32: 32,768 bytes (64 pages of 512 bytes each)

— MC9S08SG16: 16,384 bytes (32 pages of 512 bytes each)

• Single power supply program and erase

• Command interface for fast program and erase operation

• Up to 100,000 program/erase cycles at typical voltage and temperature

• Flexible block protection and vector redirection

• Security feature for FLASH and RAM

• Auto power-down for low-frequency read accesses

4.5.2 Program and Erase Times

Before any program or erase command can be accepted, the FLASH clock divider register (FCDIV) must
be written to set the internal clock for the FLASH module to a frequency (fFCLK) between 150 kHz and
200 kHz (see Section 4.7.1, “FLASH Clock Divider Register (FCDIV)”). This register can be written only
once, so normally this write is done during reset initialization. FCDIV cannot be written if the access error
flag, FACCERR in FSTAT, is set. The user must ensure that FACCERR is not set before writing to the
FCDIV register. One period of the resulting clock (1/fFCLK) is used by the command processor to time
program and erase pulses. An integer number of these timing pulses are used by the command processor
to complete a program or erase command.

Table 4-5 shows program and erase times. The bus clock frequency and FCDIV determine the frequency
of FCLK (fFCLK). The time for one cycle of FCLK is tFCLK = 1/fFCLK. The times are shown as a number
of cycles of FCLK and as an absolute time for the case where tFCLK = 5 μs. Program and erase times
shown include overhead for the command state machine and enabling and disabling of program and erase
voltages.

Table 4-5. Program and Erase Times

Parameter Cycles of FCLK Time if FCLK = 200 kHz

Byte program 9 45 μs

Byte program (burst) 4 20 μs1

1 Excluding start/end overhead

Page erase 4000 20 ms

Mass erase 20,000 100 ms
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Figure 4-2. FLASH Program and Erase Flowchart

4.5.4 Burst Program Execution

The burst program command is used to program sequential bytes of data in less time than would be
required using the standard program command. This is possible because the high voltage to the FLASH
array does not need to be disabled between program operations. Ordinarily, when a program or erase
command is issued, an internal charge pump associated with the FLASH memory must be enabled to
supply high voltage to the array. Upon completion of the command, the charge pump is turned off. When
a burst program command is issued, the charge pump is enabled and then remains enabled after completion
of the burst program operation if these two conditions are met:

• The next burst program command has been queued before the current program operation has
completed.

• The next sequential address selects a byte on the same physical row as the current byte being
programmed. A row of FLASH memory consists of 64 bytes. A byte within a row is selected by
addresses A5 through A0. A new row begins when addresses A5 through A0 are all zero.

START

WRITE TO FLASH
TO BUFFER ADDRESS AND DATA

WRITE COMMAND TO FCMD

NO

YESFPVIOL OR

WRITE 1 TO FCBEF
TO LAUNCH COMMAND

AND CLEAR FCBEF (Note 2)

1

0
FCCF ?

ERROR EXIT

DONE

Note 2: Wait at least four bus cycles

0
FACCERR ?

CLEAR ERROR

FACCERR ?

WRITE TO FCDIV (Note 1) Note 1: Required only once after reset.

1

before checking FCBEF or FCCF.

FLASH PROGRAM AND
ERASE FLOW
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5.6 Low-Voltage Detect (LVD) System
The MC9S08SG32 Series includes a system to protect against low voltage conditions in order to protect
memory contents and control MCU system states during supply voltage variations. The system is
comprised of a power-on reset (POR) circuit and a LVD circuit with trip voltages for warning and
detection. The LVD circuit is enabled when LVDE in SPMSC1 is set to 1. The LVD is disabled upon
entering any of the stop modes unless LVDSE is set in SPMSC1. If LVDSE and LVDE are both set, then
the MCU cannot enter stop2, and the current consumption in stop3 with the LVD enabled will be higher.

5.6.1 Power-On Reset Operation

When power is initially applied to the MCU, or when the supply voltage drops below the power-on reset
rearm voltage level, VPOR, the POR circuit will cause a reset condition. As the supply voltage rises, the
LVD circuit will hold the MCU in reset until the supply has risen above the low voltage detection low
threshold, VLVDL. Both the POR bit and the LVD bit in SRS are set following a POR.

5.6.2 Low-Voltage Detection (LVD) Reset Operation

The LVD can be configured to generate a reset upon detection of a low voltage condition by setting
LVDRE to 1. The low voltage detection threshold is determined by the LVDV bit. After an LVD reset has
occurred, the LVD system will hold the MCU in reset until the supply voltage has risen above the low
voltage detection threshold. The LVD bit in the SRS register is set following either an LVD reset or POR.

5.6.3 Low-Voltage Warning (LVW) Interrupt Operation

The LVD system has a low voltage warning flag to indicate to the user that the supply voltage is
approaching the low voltage condition. When a low voltage warning condition is detected and is
configured for interrupt operation (LVWIE set to 1), LVWF in SPMSC1 will be set and an LVW interrupt
request will occur.

5.7 Reset, Interrupt, and System Control Registers and Control Bits
One 8-bit register in the direct page register space and eight 8-bit registers in the high-page register space
are related to reset and interrupt systems.

Refer to Table 4-2 and Table 4-3 in Chapter 4, “Memory,” of this data sheet for the absolute address
assignments for all registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.

Some control bits in the SOPT1 and SPMSC2 registers are related to modes of operation. Although brief
descriptions of these bits are provided here, the related functions are discussed in greater detail in
Chapter 3, “Modes of Operation.”
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9.3.2 Status and Control Register 2 (ADCSC2)

The ADCSC2 register controls the compare function, conversion trigger, and conversion active of the ADC
module.

Figure 9-4. Status and Control Register 2 (ADCSC2)

00100 AD4 10100 AD20

00101 AD5 10101 AD21

00110 AD6 10110 AD22

00111 AD7 10111 AD23

01000 AD8 11000 AD24

01001 AD9 11001 AD25

01010 AD10 11010 AD26

01011 AD11 11011 AD27

01100 AD12 11100 Reserved

01101 AD13 11101 VREFH

01110 AD14 11110 VREFL

01111 AD15 11111 Module disabled

7 6 5 4 3 2 1 0

R ADACT
ADTRG ACFE ACFGT

0 0
R1

1 Bits 1 and 0 are reserved bits that must always be written to 0.

R1

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 9-5. ADCSC2 Register Field Descriptions

Field Description

7
ADACT

Conversion Active — Indicates that a conversion is in progress. ADACT is set when a conversion is initiated
and cleared when a conversion is completed or aborted.
0 Conversion not in progress
1 Conversion in progress

6
ADTRG

Conversion Trigger Select — Selects the type of trigger used for initiating a conversion. Two types of triggers
are selectable: software trigger and hardware trigger. When software trigger is selected, a conversion is initiated
following a write to ADCSC1. When hardware trigger is selected, a conversion is initiated following the assertion
of the ADHWT input.
0 Software trigger selected
1 Hardware trigger selected

Table 9-4. Input Channel Select (continued)

ADCH Input Select ADCH Input Select
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• Average the result by converting the analog input many times in succession and dividing the sum
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and
averaging. Noise that is synchronous to ADCK cannot be averaged out.

9.6.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step
ideally has the same height (1 code) and width. The width is defined as the delta between the transition
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10),
defined as 1LSB, is:

1LSB = (VREFH - VREFL) / 2N Eqn. 9-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions
the code transitions when the voltage is at the midpoint between the points where the straight line transfer
function is exactly represented by the actual transfer function. Therefore, the quantization error will be ±
1/2LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first (0x000) conversion is
only 1/2LSB and the code width of the last (0xFF or 0x3FF) is 1.5LSB.

9.6.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2LSB). If the first
conversion is 0x001, then the difference between the actual 0x001 code width and its ideal (1LSB)
is used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5LSB). If the last conversion is 0x3FE, then the
difference between the actual 0x3FE code width and its ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function and includes all forms of error.

9.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
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11.3.2 ICS Control Register 2 (ICSC2)

7 6 5 4 3 2 1 0

R
BDIV RANGE HGO LP EREFS ERCLKEN EREFSTEN

W

Reset: 0 1 0 0 0 0 0 0

Figure 11-4. ICS Control Register 2 (ICSC2)

Table 11-3. ICS Control Register 2 Field Descriptions

Field Description

7:6
BDIV

Bus Frequency Divider — Selects the amount to divide down the clock source selected by the CLKS bits. This
controls the bus frequency.
00 Encoding 0 — Divides selected clock by 1
01 Encoding 1 — Divides selected clock by 2 (reset default)
10 Encoding 2 — Divides selected clock by 4
11 Encoding 3 — Divides selected clock by 8

5
RANGE

Frequency Range Select — Selects the frequency range for the external oscillator.
1 High frequency range selected for the external oscillator
0 Low frequency range selected for the external oscillator

4
HGO

High Gain Oscillator Select — The HGO bit controls the external oscillator mode of operation.
1 Configure external oscillator for high gain operation
0 Configure external oscillator for low power operation

3
LP

Low Power Select — The LP bit controls whether the FLL is disabled in FLL bypassed modes.
1 FLL is disabled in bypass modes unless BDM is active
0 FLL is not disabled in bypass mode

2
EREFS

External Reference Select — The EREFS bit selects the source for the external reference clock.
1 Oscillator requested
0 External Clock Source requested

1
ERCLKEN

External Reference Enable — The ERCLKEN bit enables the external reference clock for use as ICSERCLK.
1 ICSERCLK active
0 ICSERCLK inactive

0
EREFSTEN

External Reference Stop Enable — The EREFSTEN bit controls whether or not the external reference clock
remains enabled when the ICS enters stop mode.
1 External reference clock stays enabled in stop if ERCLKEN is set or if ICS is in FEE, FBE, or FBELP mode

before entering stop
0 External reference clock is disabled in stop
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13.1.3 Block Diagram

The block diagram for the RTC module is shown in Figure 13-2.

Figure 13-2. Real-Time Counter (RTC) Block Diagram

13.2 External Signal Description
The RTC does not include any off-chip signals.

13.3 Register Definition
The RTC includes a status and control register, an 8-bit counter register, and an 8-bit modulo register.

Refer to the direct-page register summary in the memory section of this document for the absolute address
assignments for all RTC registers.This section refers to registers and control bits only by their names and
relative address offsets.

Table 13-1 is a summary of RTC registers.

Table 13-1. RTC Register Summary

Name 7 6 5 4 3 2 1 0

RTCSC
R

RTIF RTCLKS RTIE RTCPS
W

RTCCNT
R RTCCNT

W

RTCMOD
R

RTCMOD
W

Clock
Source
Select

Prescaler
Divide-By

8-Bit Counter
(RTCCNT)

8-Bit Modulo
(RTCMOD)

8-Bit Comparator

RTIF

RTIE

Background

VDD

RTC
Interrupt
Request

D Q

R
E

LPO

RTC
Clock

Mode

ERCLK

IRCLK

RTCLKS

Write 1 to
RTIF

RTCPSRTCLKS[0]
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Figure 13-6. RTC Counter Overflow Example

In the example of Figure 13-6, the selected clock source is the 1-kHz internal oscillator clock source. The
prescaler (RTCPS) is set to 0xA or divide-by-4. The modulo value in the RTCMOD register is set to 0x55.
When the counter, RTCCNT, reaches the modulo value of 0x55, the counter overflows to 0x00 and
continues counting. The real-time interrupt flag, RTIF, sets when the counter value changes from 0x55 to
0x00. A real-time interrupt is generated when RTIF is set, if RTIE is set.

13.5 Initialization/Application Information
This section provides example code to give some basic direction to a user on how to initialize and configure
the RTC module. The example software is implemented in C language.

The example below shows how to implement time of day with the RTC using the 1-kHz clock source to
achieve the lowest possible power consumption. Because the 1-kHz clock source is not as accurate as a
crystal, software can be added for any adjustments. For accuracy without adjustments at the expense of
additional power consumption, the external clock (ERCLK) or the internal clock (IRCLK) can be selected
with appropriate prescaler and modulo values.

/* Initialize the elapsed time counters */
Seconds = 0;
Minutes = 0;
Hours = 0;
Days=0;

/* Configure RTC to interrupt every 1 second from 1-kHz clock source */
RTCMOD.byte = 0x00;
RTCSC.byte = 0x1F;

/**********************************************************************
Function Name : RTC_ISR
Notes : Interrupt service routine for RTC module.
**********************************************************************/
#pragma TRAP_PROC
void RTC_ISR(void)
{

/* Clear the interrupt flag */

0x55

0x550x540x530x52 0x00 0x01

RTCMOD

RTIF

RTCCNT

RTC Clock
(RTCPS = 0xA)

Internal 1-kHz
Clock Source
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14.2.5 SCI Status Register 2 (SCIS2)

This register has one read-only status flag.

1
FE

Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop
bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read
SCIS1 with FE = 1 and then read the SCI data register (SCID).
0 No framing error detected. This does not guarantee the framing is correct.
1 Framing error.

0
PF

Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in
the received character does not agree with the expected parity value. To clear PF, read SCIS1 and then read the
SCI data register (SCID).
0 No parity error.
1 Parity error.

7 6 5 4 3 2 1 0

R
LBKDIF RXEDGIF

0
RXINV RWUID BRK13 LBKDE

RAF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-9. SCI Status Register 2 (SCIS2)

Table 14-6. SCIS2 Field Descriptions

Field Description

7
LBKDIF

LIN Break Detect Interrupt Flag — LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break
character is detected. LBKDIF is cleared by writing a “1” to it.
0 No LIN break character has been detected.
1 LIN break character has been detected.

6
RXEDGIF

RxD Pin Active Edge Interrupt Flag — RXEDGIF is set when an active edge (falling if RXINV = 0, rising if
RXINV=1) on the RxD pin occurs. RXEDGIF is cleared by writing a “1” to it.
0 No active edge on the receive pin has occurred.
1 An active edge on the receive pin has occurred.

4
RXINV1

Receive Data Inversion — Setting this bit reverses the polarity of the received data input.
0 Receive data not inverted
1 Receive data inverted

3
RWUID

Receive Wake Up Idle Detect— RWUID controls whether the idle character that wakes up the receiver sets the
IDLE bit.
0 During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character.
1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character.

2
BRK13

Break Character Generation Length — BRK13 is used to select a longer transmitted break character length.
Detection of a framing error is not affected by the state of this bit.
0 Break character is transmitted with length of 10 bit times (11 if M = 1)
1 Break character is transmitted with length of 13 bit times (14 if M = 1)

Table 14-5. SCIS1 Field Descriptions (continued)

Field Description
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characters. At the end of a message, or at the beginning of the next message, all receivers automatically
force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next message.

14.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits).

When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE
flag. The receiver wakes up and waits for the first data character of the next message which will set the
RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE
flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle
bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward
the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time,
so the idle detection is not affected by the data in the last character of the previous message.

14.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved
for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is
received and sets the RDRF flag. In this case the character with the MSB set is received even though the
receiver was sleeping during most of this character time.

14.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events,
and a third vector is used for OR, NF, FE, and PF error conditions. Each of these ten interrupt sources can
be separately masked by local interrupt enable masks. The flags can still be polled by software when the
local masks are cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCID. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is
often used in systems with modems to determine when it is safe to turn off the modem. If the transmit
complete interrupt enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1.
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Figure 15-1. MC9S08SG32 Series Block Diagram Highlighting SPI Block and Pin
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NOTE

Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit change to the CPHA bit. These
changes should be performed as separate operations or unexpected behavior may occur.

15.4.2 SPI Control Register 2 (SPIC2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not
implemented and always read 0.

4
MSTR

Master/Slave Mode Select
0 SPI module configured as a slave SPI device
1 SPI module configured as a master SPI device

3
CPOL

Clock Polarity — This bit effectively places an inverter in series with the clock signal from a master SPI or to a
slave SPI device. Refer to Section 15.5.1, “SPI Clock Formats” for more details.
0 Active-high SPI clock (idles low)
1 Active-low SPI clock (idles high)

2
CPHA

Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral
devices. Refer to Section 15.5.1, “SPI Clock Formats” for more details.
0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle data transfer
1 First edge on SPSCK occurs at the start of the first cycle of an 8-cycle data transfer

1
SSOE

Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in
SPCR2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 15-2.

0
LSBFE

LSB First (Shifter Direction)
0 SPI serial data transfers start with most significant bit
1 SPI serial data transfers start with least significant bit

Table 15-2. SS Pin Function

MODFEN SSOE Master Mode Slave Mode

0 0 General-purpose I/O (not SPI) Slave select input

0 1 General-purpose I/O (not SPI) Slave select input

1 0 SS input for mode fault Slave select input

1 1 Automatic SS output Slave select input

7 6 5 4 3 2 1 0

R 0 0 0
MODFEN BIDIROE

0
SPISWAI SPC0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-6. SPI Control Register 2 (SPIC2)

Table 15-1. SPIC1 Field Descriptions (continued)

Field Description
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The bus rate clock is the main system bus clock for the MCU. This clock source requires no
synchronization because it is the clock that is used for all internal MCU activities including operation of
the CPU and buses.

In MCUs that have no PLL and FLL or the PLL and FLL are not engaged, the fixed system clock source
is the same as the bus-rate-clock source, and it does not go through a synchronizer. When a PLL or FLL
is present and engaged, a synchronizer is required between the crystal divided-by two clock source and the
timer counter so counter transitions will be properly aligned to bus-clock transitions. A synchronizer will
be used at chip level to synchronize the crystal-related source clock to the bus clock.

The external clock source may be connected to any TPM channel pin. This clock source always has to pass
through a synchronizer to assure that counter transitions are properly aligned to bus clock transitions. The
bus-rate clock drives the synchronizer; therefore, to meet Nyquist criteria even with jitter, the frequency of
the external clock source must not be faster than the bus rate divided-by four. With ideal clocks the external
clock can be as fast as bus clock divided by four.

When the external clock source shares the TPM channel pin, this pin should not be used for other channel
timing functions. For example, it would be ambiguous to configure channel 0 for input capture when the
TPM channel 0 pin was also being used as the timer external clock source. (It is the user’s responsibility
to avoid such settings.) The TPM channel could still be used in output compare mode for software timing
functions (pin controls set not to affect the TPM channel pin).

16.4.1.2 Counter Overflow and Modulo Reset

An interrupt flag and enable are associated with the 16-bit main counter. The flag (TOF) is a
software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE=0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE=1) where a static hardware interrupt is generated whenever the TOF flag is equal to one.

The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned
PWM (CPWMS=1). In the simplest mode, there is no modulus limit and the TPM is not in CPWMS=1
mode. In this case, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the TPM is in center-aligned PWM mode (CPWMS=1), the TOF flag gets set as the counter changes
direction at the end of the count value set in the modulus register (that is, at the transition from the value
set in the modulus register to the next lower count value). This corresponds to the end of a PWM period
(the 0x0000 count value corresponds to the center of a period).

Table 16-8. TPM Clock Source Selection

CLKSB:CLKSA TPM Clock Source to Prescaler Input

00 No clock selected (TPM counter disabled)

01 Bus rate clock

10 Fixed system clock

11 External source
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In output compare mode, values are transferred to the corresponding timer channel registers only after both
8-bit halves of a 16-bit register have been written and according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), the registers are updated at the next change of the TPM counter
(end of the prescaler counting) after the second byte is written.

The coherency sequence can be manually reset by writing to the channel status/control register
(TPMxCnSC).

An output compare event sets a flag bit (CHnF) which may optionally generate a CPU-interrupt request.

16.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS=0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the value of the modulus register
(TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the setting in the timer channel
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the
ELSnA control bit. 0% and 100% duty cycle cases are possible.

The output compare value in the TPM channel registers determines the pulse width (duty cycle) of the
PWM signal (Figure 16-15). The time between the modulus overflow and the output compare is the pulse
width. If ELSnA=0, the counter overflow forces the PWM signal high, and the output compare forces the
PWM signal low. If ELSnA=1, the counter overflow forces the PWM signal low, and the output compare
forces the PWM signal high.

Figure 16-15.  PWM Period and Pulse Width (ELSnA=0)

When the channel value register is set to 0x0000, the duty cycle is 0%. 100% duty cycle can be achieved
by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus
setting. This implies that the modulus setting must be less than 0xFFFF in order to get 100% duty cycle.

Because the TPM may be used in an 8-bit MCU, the settings in the timer channel registers are buffered to
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxCnVH and TPMxCnVL, actually write to buffer registers. In edge-aligned PWM mode, values are
transferred to the corresponding timer-channel registers according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
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Figure 16-17. Generation of high-true EPWM signal by TPM v2 and v3 after the reset

Figure 16-18. Generation of low-true EPWM signal by TPM v2 and v3 after the reset

The following procedure can be used in TPM v3 (when the channel pin is also a port pin) to emulate
the high-true EPWM generated by TPM v2 after the reset.
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When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD
chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU
into active background mode after reset. The specific conditions for forcing active background depend
upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not
necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to
indicate the start of each bit time. The external controller provides this falling edge whether data is
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed.

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.


