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1.3 System Clock Distribution
Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock
inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module
function.

The following defines the clocks used in this MCU:

• BUSCLK — The frequency of the bus is always half of ICSOUT.

• ICSOUT — Primary output of the ICS and is twice the bus frequency.

• ICSLCLK — Development tools can select this clock source to speed up BDC communications in
systems where the bus clock is configured to run at a very slow frequency.

• ICSERCLK — External reference clock can be selected as the RTC clock source and as the
alternate clock for the ADC module.

• ICSIRCLK — Internal reference clock can be selected as the RTC clock source.

• ICSFFCLK — Fixed frequency clock can be selected as clock source for the TPM1, TPM2 and
MTIM modules.

• LPOCLK — Independent 1-kHz clock source that can be selected as the clock source for the COP
and RTC modules.

• TCLK — External input clock source for TPM1, TPM2 and MTIM and is referenced as TPMCLK
in TPM chapters.

Figure 1-2. System Clock Distribution Diagram
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2.2 Recommended System Connections
Figure 2-4 shows pin connections that are common to MC9S08SG32 Series application systems.

Figure 2-4. Basic System Connections
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lower-voltage source to the CPU and other internal circuitry of the MCU.

BKGD/MS

RESET

OPTIONAL
MANUAL
RESET

VDD

BACKGROUND HEADER

PORT
B

PTB0/PIB0/RxD/ADP4

PTB1/PIB1/TxD/ADP5

PTB2/PIB2/SPSCK/ADP6

PTB3/PIB3/MOSI/ADP7

PTB4/TPM2CH1/MISO

PTB5/TPM1CH1/SS

PTB6/SDA/XTAL

PTB7/SCL/EXTAL

PORT
C

PTC2/ADP10

PTC3/ADP11

MC9S08SG32

C2C1 X1

RF RS

PORT
A

PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+

PTA1/PIA1/TPM2CH0/ADP1/ACMP–

PTA2/PIA2/SDA/ACMPO/ADP2

PTA3/PIA3/SCL/ADP3

0.1 μF

VDD

4.7 kΩ–10 kΩ

NOTE 1

NOTES:
1. External crystal circuit not required if using the internal clock option.
2. RESET pin can only be used to reset into user mode, you can not enter BDM using RESET pin. BDM can be entered by

holding MS low during POR or writing a 1 to BDFR in SBDFR with MS low after issuing BDM command.
3. RC filter on RESET pin recommended for noisy environments.
4. For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL are double bonded to VDD and VSS respectively.

PTA6/TPM2CH0

PTA7/TPM2CH1

PTC4/ADP12

PTC5/ADP13

PTC6/ADP14

PTC7/ADP15

PTC0/TPM1CH0/ADP8

PTC1/TPM1CH1/ADP9

CBY
0.1 μF

\VREFH

\VREFLVSSA

VDDA

VDD

VSS

CBY
0.1 μF

CBLK
10 μF

+
5 V

+

SYSTEM
POWER



Chapter 2 Pins and Connections

MC9S08SG32 Data Sheet, Rev. 8

32 Freescale Semiconductor



Chapter 3 Modes of Operation

MC9S08SG32 Data Sheet, Rev. 8

34 Freescale Semiconductor

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD/MS pin while the MCU is in
run mode; non-intrusive commands can also be executed when the MCU is in the active
background mode. Non-intrusive commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— The BACKGROUND command

• Active background commands, which can only be executed while the MCU is in active background
mode. Active background commands include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user application program (GO)

The active background mode is used to program a bootloader or user application program into the FLASH
program memory before the MCU is operated in run mode for the first time. When the MC9S08SG32
Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by
default unless specifically noted so there is no program that could be executed in run mode until the
FLASH memory is initially programmed. The active background mode can also be used to erase and
reprogram the FLASH memory after it has been previously programmed.

For additional information about the active background mode, refer to the Development Support chapter.

3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can
be used. Only the BACKGROUND command and memory-access-with-status commands are available
when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND
command can be used to wake the MCU from wait mode and enter active background mode.

3.6 Stop Modes
One of two stop modes is entered upon execution of a STOP instruction when STOPE in SOPT1. In any
stop mode, the bus and CPU clocks are halted. The ICS module can be configured to leave the reference
clocks running. See Chapter 11, “Internal Clock Source (S08ICSV2),” for more information.
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Chapter 4
Memory

4.1 MC9S08SG32 Series Memory Map
As shown in Figure 4-1, on-chip memory in the MC9S08SG32 Series series of MCUs consists of RAM,
FLASH program memory for nonvolatile data storage, and I/O and control/status registers. The registers
are divided into three groups:

• Direct-page registers (0x0000 through 0x007F)

• High-page registers (0x1800 through 0x185F)

• Nonvolatile registers (0xFFB0 through 0xFFBF)

Figure 4-1. MC9S08SG32/MC9S08SG16 Memory Map
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The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset.
Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use
the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once
SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental
changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background
debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits
background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either
background debug mode or stop mode and begins from zero upon exit from background debug mode or
stop mode.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events
such as an edge on a pin interrupt or a timer-overflow event. The debug module can also generate an SWI
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR
is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which
prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other
system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and
consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
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6.6.1.5 Port A Drive Strength Selection Register (PTADS)

6.6.1.6 Port A Interrupt Status and Control Register (PTASC)

7 6 5 4 3 2 1 0

R
PTADS7 PTADS6 R R PTADS3 PTADS2 PTADS1 PTADS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-7. Drive Strength Selection for Port A Register (PTADS)

Table 6-6. PTADS Register Field Descriptions

Field Description

7:5,3:0
PTADS[7:5,

3:0]

Output Drive Strength Selection for Port A Bits — Each of these control bits selects between low and high
output drive for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port A bit n.
1 High output drive strength selected for port A bit n.

5:4
Reserved

Reserved Bits — These bits are unused on this MCU, writes have no affect and could read as 1s or 0s.

7 6 5 4 3 2 1 0

R 0 0 0 0 PTAIF 0
PTAIE PTAMOD

W PTAACK

Reset: 0 0 0 0 0 0 0 0

Figure 6-8. Port A Interrupt Status and Control Register (PTASC)

Table 6-7. PTASC Register Field Descriptions

Field Description

3
PTAIF

Port A Interrupt Flag — PTAIF indicates when a port A interrupt is detected. Writes have no effect on PTAIF.
0 No port A interrupt detected.
1 Port A interrupt detected.

2
PTAACK

Port A Interrupt Acknowledge — Writing a 1 to PTAACK is part of the flag clearing mechanism. PTAACK
always reads as 0.

1
PTAIE

Port A Interrupt Enable — PTAIE determines whether a port A interrupt is enabled.
0 Port A interrupt request not enabled.
1 Port A interrupt request enabled.

0
PTAMOD

Port A Detection Mode — PTAMOD (along with the PTAES bits) controls the detection mode of the port A
interrupt pins.
0 Port A pins detect edges only.
1 Port A pins detect both edges and levels.
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6.6.3 Port C Registers

Port C is controlled by the registers listed below.

6.6.3.1 Port C Data Register (PTCD)

6.6.3.2 Port C Data Direction Register (PTCDD)

7 6 5 4 3 2 1 0

R
PTCD7 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-19. Port C Data Register (PTCD)

Table 6-18. PTCD Register Field Descriptions

Field Description

7:0
PTCD[7:0]

Port C Data Register Bits — For port C pins that are inputs, reads return the logic level on the pin. For port C
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port C pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTCD to all 0s, but these 0s are not driven out the corresponding pins because reset also
configures all port pins as high-impedance inputs with pull-ups disabled.

7 6 5 4 3 2 1 0

R
PTCDD7 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDD1 PTCDD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-20. Port C Data Direction Register (PTCDD)

Table 6-19. PTCDD Register Field Descriptions

Field Description

7:0
PTCDD[7:0]

Data Direction for Port C Bits — These read/write bits control the direction of port C pins and what is read for
PTCD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port C bit n and PTCD reads return the contents of PTCDn.
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CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP  ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator with Memory A – M
(CCR Updated But Operands Not Changed)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9E D1
9E E1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

↕ 1 1 – – ↕  ↕  ↕

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement M ← (M)= $FF – (M)
(One’s Complement) A ← (A) = $FF – (A)

X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E 63

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

0 1 1 – – ↕  ↕ 1

CPHX opr16a
CPHX #opr16i
CPHX opr8a
CPHX oprx8,SP

Compare Index Register (H:X) with Memory
(H:X) – (M:M + $0001)
(CCR Updated But Operands Not Changed)

EXT
IMM
DIR
SP1

3E
65
75

9E F3

hh ll
jj kk
dd
ff

6
3
5
6

prrfpp
ppp
rrfpp
prrfpp

↕ 1 1 – – ↕  ↕  ↕

CPX #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX  ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index Register Low) with
Memory
X – M
(CCR Updated But Operands Not Changed)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9E D3
9E E3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

↕ 1 1 – – ↕  ↕  ↕

DAA
Decimal Adjust Accumulator After ADD or
ADC of BCD Values

INH 72 1 p U 1 1 – – ↕  ↕  ↕

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ ,X,rel
DBNZ oprx8,SP,rel

Decrement A, X, or M and Branch if Not Zero
(if (result) ≠ 0)
DBNZX Affects X Not H

DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E 6B

dd rr
rr
rr
ff rr
rr
ff rr

7
4
4
7
6
8

rfwpppp
fppp
fppp
rfwpppp
rfwppp
prfwpppp

– 1 1 – – – – –

DEC opr8a
DECA
DECX
DEC oprx8,X
DEC ,X
DEC oprx8,SP

Decrement M ← (M) – $01
A ← (A) – $01
X ← (X) – $01
M ← (M) – $01
M ← (M) – $01
M ← (M) – $01

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E 6A

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

↕ 1 1 – – ↕  ↕ –

DIV
 Divide
A ← (H:A)÷(X); H ← Remainder

INH 52 6 fffffp – 1 1 – – – ↕  ↕

EOR #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR  ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR Memory with Accumulator
A ← (A ⊕ M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9E D8
9E E8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

0 1 1 – – ↕  ↕ –

Table 7-2. Instruction Set Summary (Sheet 4 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affecton CCR

V 1 1 H I N Z C
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Figure 10-9. IIC Bus Transmission Signals

10.4.1.1 Start Signal

When the bus is free, no master device is engaging the bus (SCL and SDA lines are at logical high), a
master may initiate communication by sending a start signal. As shown in Figure 10-9, a start signal is
defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new
data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle
states.

10.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the start signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 10-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit
an address equal to its own slave address. The IIC cannot be master and slave at the same time. However,
if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly even if it
is being addressed by another master.
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Chapter 14
Serial Communications Interface (S08SCIV4)

14.1 Introduction
Figure 14-1 shows the MC9S08SG32 Series block diagram with the SCI module highlighted.
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14.1.3 Block Diagram

Figure 14-2 shows the transmitter portion of the SCI.

Figure 14-2. SCI Transmitter Block Diagram
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Figure 15-1. MC9S08SG32 Series Block Diagram Highlighting SPI Block and Pin
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In output compare mode, values are transferred to the corresponding timer channel registers only after both
8-bit halves of a 16-bit register have been written and according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), the registers are updated at the next change of the TPM counter
(end of the prescaler counting) after the second byte is written.

The coherency sequence can be manually reset by writing to the channel status/control register
(TPMxCnSC).

An output compare event sets a flag bit (CHnF) which may optionally generate a CPU-interrupt request.

16.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS=0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the value of the modulus register
(TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the setting in the timer channel
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the
ELSnA control bit. 0% and 100% duty cycle cases are possible.

The output compare value in the TPM channel registers determines the pulse width (duty cycle) of the
PWM signal (Figure 16-15). The time between the modulus overflow and the output compare is the pulse
width. If ELSnA=0, the counter overflow forces the PWM signal high, and the output compare forces the
PWM signal low. If ELSnA=1, the counter overflow forces the PWM signal low, and the output compare
forces the PWM signal high.

Figure 16-15.  PWM Period and Pulse Width (ELSnA=0)

When the channel value register is set to 0x0000, the duty cycle is 0%. 100% duty cycle can be achieved
by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus
setting. This implies that the modulus setting must be less than 0xFFFF in order to get 100% duty cycle.

Because the TPM may be used in an 8-bit MCU, the settings in the timer channel registers are buffered to
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxCnVH and TPMxCnVL, actually write to buffer registers. In edge-aligned PWM mode, values are
transferred to the corresponding timer-channel registers according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
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...

configure the channel pin as output port pin and set the output pin;

configure the channel to generate the EPWM signal but keep ELSnB:ELSnA as 00;

configure the other registers (TPMxMODH, TPMxMODL, TPMxCnVH, TPMxCnVL, ...);

configure CLKSB:CLKSA bits (TPM v3 starts to generate the high-true EPWM signal, however
TPM does not control the channel pin, so the EPWM signal is not available);

wait until the TOF is set (or use the TOF interrupt);

enable the channel output by configuring ELSnB:ELSnA bits (now EPWM signal is available);

...



Chapter 17 Development Support

MC9S08SG32 Data Sheet, Rev. 8

278 Freescale Semiconductor

The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)

• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
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A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in
comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for
another cycle matched the value in comparator A. There can be any number of cycles after the A match
and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally)
must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte
of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of
comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low
half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within
the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in
comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the
FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger
event occurs each time the address matches the value in comparator B. Trigger events cause the data to be
captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range (A ≤ Address ≤ B) — A trigger occurs when the address is greater than or equal to the value
in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than
the value in comparator A or greater than the value in comparator B.
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A.12.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that
can be used as the optional external source to the timer counter. These synchronizers operate from the
current bus rate clock.

Figure A-12. Timer External Clock

Figure A-13. Timer Input Capture Pulse

Table A-14. TPM Input Timing

# C Rating Symbol Min Max Unit

Temp
Rated
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1 — External clock frequency (1/tTCLK) fTCLK dc fBus/4 MHz ♦ ♦

2 — External clock period tTCLK 4 — tcyc ♦ ♦

3 — External clock high time tclkh 1.5 — tcyc ♦ ♦

4 — External clock low time tclkl 1.5 — tcyc ♦ ♦

5 — Input capture pulse width tICPW 1.5 — tcyc ♦ ♦
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