E. Katice Semiconductor Corporation - <u>LCMX02-1200HC-4TG100I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

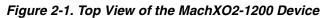
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

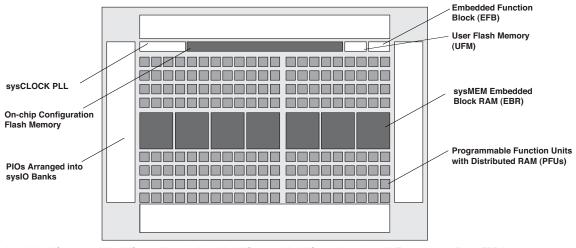
Details

Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	79
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-1200hc-4tg100i

Email: info@E-XFL.COM

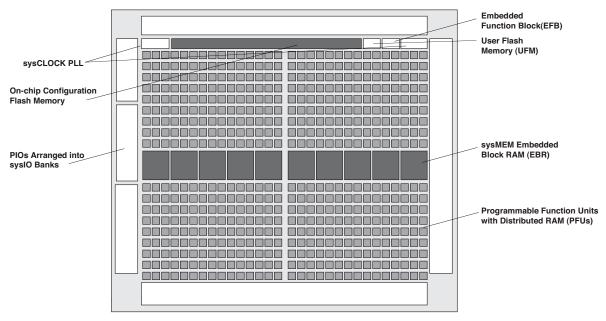
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


MachXO2 Family Data Sheet Architecture


March 2016

Data Sheet DS1035

Architecture Overview


The MachXO2 family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). The larger logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Note: MachXO2-256, and MachXO2-640/U are similar to MachXO2-1200. MachXO2-256 has a lower LUT count and no PLL or EBR blocks. MachXO2-640 has no PLL, a lower LUT count and two EBR blocks. MachXO2-640U has a lower LUT count, one PLL and seven EBR blocks.

Figure 2-2. Top View of the MachXO2-4000 Device

Note: MachXO2-1200U, MachXO2-2000/U and MachXO2-7000 are similar to MachXO2-4000. MachXO2-1200U and MachXO2-2000 have a lower LUT count, one PLL, and eight EBR blocks. MachXO2-2000U has a lower LUT count, two PLLs, and 10 EBR blocks. MachXO2-7000 has a higher LUT count, two PLLs, and 26 EBR blocks.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Routing

There are many resources provided in the MachXO2 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

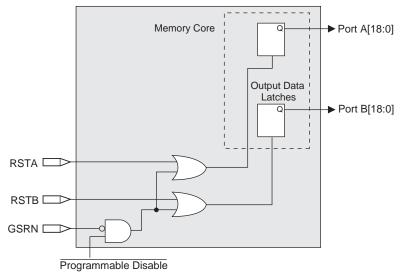
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each MachXO2 device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO2 architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO2-640U, MachXO2-1200/U and higher density devices have two edge clocks each on the top and bottom edges. Lower density devices have no edge clocks. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.


The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO2 devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

The maximum frequency for the primary clock network is shown in the MachXO2 External Switching Characteristics table.

The primary clock signals for the MachXO2-256 and MachXO2-640 are generated from eight 17:1 muxes The available clock sources include eight I/O sources and 9 routing inputs. Primary clock signals for the MachXO2-640U, MachXO2-1200/U and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sysCLOCK PLL outputs.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

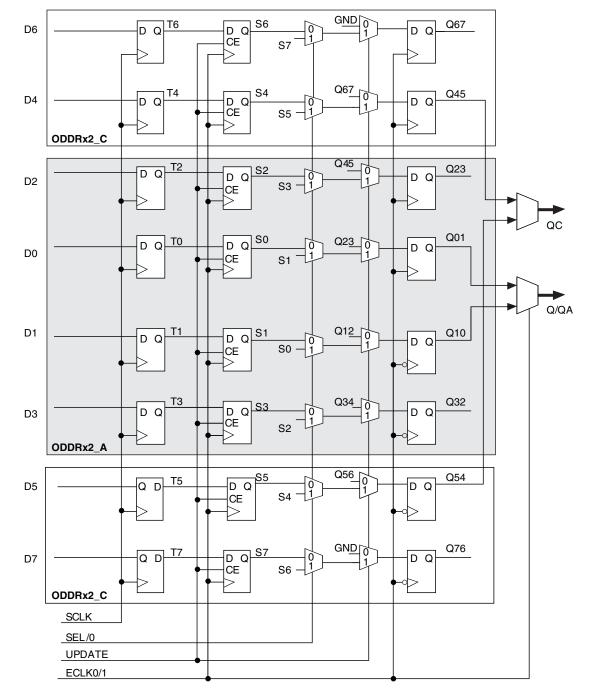
EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.


If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Figure 2-17. Output Gearbox

More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

Table 2-13. Supported Output Standards

Output Standard	V _{CCIO} (Typ.)
Single-Ended Interfaces	
LVTTL	3.3
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
LVCMOS15	1.5
LVCMOS12	1.2
LVCMOS33, Open Drain	
LVCMOS25, Open Drain	
LVCMOS18, Open Drain	
LVCMOS15, Open Drain	
LVCMOS12, Open Drain	
PCI33	3.3
SSTL25 (Class I)	2.5
SSTL18 (Class I)	1.8
HSTL18(Class I)	1.8
Differential Interfaces	
LVDS ^{1, 2}	2.5, 3.3
BLVDS, MLVDS, RSDS ²	2.5
LVPECL ²	3.3
MIPI ²	2.5
Differential SSTL18	1.8
Differential SSTL25	2.5
Differential HSTL18	1.8

1. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices.

sysIO Buffer Banks

The numbers of banks vary between the devices of this family. MachXO2-1200U, MachXO2-2000/U and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO2-1200 and lower density devices have four banks (one bank per side). Figures 2-18 and 2-19 show the sysIO banks and their associated supplies for all devices.

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

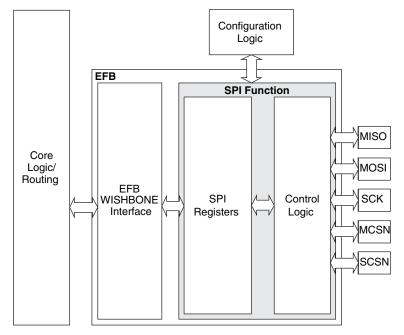


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description			
spi_csn[0]	0	Master	SPI master chip-select output			
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)			
spi_scsn	I	Slave	SPI slave chip-select input			
spi_irq	0	Master/Slave	Interrupt request			
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.			
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.			
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.			
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).			
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.			
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.			

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, ana- log circuitry such as the POR, PLLs, on-chip oscillator, and referenced and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Referenced and differential I/O buffers (used to implement standards such as HSTL, SSTL and LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Power On Reset

MachXO2 devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO0} (controls configuration) voltage levels. It then triggers download from the on-chip configuration Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For devices without voltage regulators (ZE and HE devices), V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators (HC devices), V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as Flash Download Time (t_{REFRESH}) in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tristate. I/Os are released to user functionality once the device has finished configuration. Note that for HC devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once a ZE or HE device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a minimal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units	
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	—	1.06	V	
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	Imp up trip point (band gap based circuit 1.5 I V _{CC} power supply) 1.5 Imp down trip point (band gap based circuit 0.75				
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CCINT})$	0.75	_	0.93	V	
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring V_{CC})	0.98	_	1.33	V	
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring $V_{CCINT})$	_	0.6		V	
V _{PORDNSRAMEXT}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	—	V	

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for HC devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Programming/Erase Specifications

Symbol	Parameter	Min.	Max. ¹	Units	
Nanaaaya	Flash Programming cycles per t RETENTION—10,00		10,000	Cycles	
NPROGCYC	Flash functional programming cycles	—	100,000	Cycles	
	Data retention at 100 °C junction temperature	temperature 10 —		Years	
RETENTION	Data retention at 85 °C junction temperature	20	_	Teals	

1. Maximum Flash memory reads are limited to 7.5E13 cycles over the lifetime of the product.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Max.	Units	
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ	

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance

Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

Static Supply Current – ZE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ. ⁴	Units
Icc	Core Power Supply	LCMXO2-256ZE	18	μΑ
		LCMXO2-640ZE	28	μΑ
		LCMXO2-1200ZE	56	μΑ
		LCMXO2-2000ZE	80	μA
		LCMXO2-4000ZE	124	μΑ
		LCMXO2-7000ZE	189	μΑ
I _{CCIO}	Bank Power Supply ⁵ V _{CCIO} = 2.5 V	All devices	1	μΑ

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Static Power Consumption Contribution of Different Components – ZE Devices

The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool.

Symbol	Parameter	Тур.	Units
I _{DCBG}	Bandgap DC power contribution	101	μΑ
IDCPOR	POR DC power contribution	38	μΑ
IDCIOBANKCONTROLLER	DC power contribution per I/O bank controller	143	μA

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OL} Max. V _{OH} Min.		I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
LVCMOS10R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

MachXO2 devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO2 devices do not meet the relevant JEDEC specification are documented in the table below.

2. MachXO2 devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to TN1202, MachXO2 sysIO Usage Guide.

3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.

4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

Input Standard	V _{CCIO} (V)	V _{IL} Max. (V)
LVCMOS 33	1.5	0.685
LVCMOS 25	1.5	0.687
LVCMOS 18	1.5	0.655

sysIO Differential Electrical Characteristics

The LVDS differential output buffers are available on the top side of MachXO2-640U, MachXO2-1200/U and higher density devices in the MachXO2 PLD family.

LVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V V	Input Voltage	V _{CCIO} = 3.3 V	0		2.605	V
V _{INP} V _{INM}	input voltage	$V_{CCIO} = 2.5 V$	0		2.05	V
V _{THD}	Differential Input Threshold		±100	_		mV
V.	Input Common Mode Voltage	V _{CCIO} = 3.3 V	0.05		2.6	V
V _{CM}	Input Common Mode Voltage	$V_{CCIO} = 2.5 V$	0.05		2.0	V
I _{IN}	Input current	Power on	_	_	±10	μA
V _{OH}	Output high voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	_	1.375		V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.90	1.025		V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_		50	mV
V _{OS}	Output voltage offset	$(V_{OP} + V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.20	1.395	V
ΔV_{OS}	Change in V _{OS} between H and L		—	—	50	mV
I _{OSD}	Output short circuit current	$V_{OD} = 0 V$ driver outputs shorted	_		24	mA

			_	-6	_	-5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}			l		L	I		L	<u> </u>
t _{DVADQ}	Input Data Valid After DQS Input		_	0.369	_	0.395	_	0.421	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.529	_	0.530	_	0.527	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	280	_	250	—	208	Mbps
f _{SCLK}	SCLK Frequency			140	—	125		104	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	280	0	250	0	208	Mbps
DDR ^{9, 12}			•						
t _{DVADQ}	Input Data Valid After DQS Input		_	0.350	_	0.387	_	0.414	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.545	_	0.538	_	0.532	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices, right	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed		—	300	—	250	—	208	Mbps
f _{SCLK}	SCLK Frequency		—	150	—	125	—	104	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps
DDR2 ^{9, 12}									
t _{DVADQ}	Input Data Valid After DQS Input		_	0.360	_	0.378	_	0.406	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.555	_	0.549	_	0.542	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed	1		300		250		208	Mbps
f _{SCLK}	SCLK Frequency	1		150	_	125		104	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

8. This number for general purpose usage. Duty cycle tolerance is +/- 10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32 QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	-3	-	2	-	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Cloo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	150	_	125	—	104	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	—	1250		1272	—	1296	ps
		MachXO2-640ZE		1161		1183	—	1206	ps
	Primary Clock Skew Within a	MachXO2-1200ZE		1213		1267	—	1322	ps
^t SKEW_PRI	Device	MachXO2-2000ZE		1204		1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	—	1269	ps
		MachXO2-7000ZE		1243		1268	—	1296	ps
Edge Clock									
f _{MAX_EDGE⁸}	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin	Propagation Delay			1	1				1
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O I	Pin Parameters (Using Primary	Clock without PLL)	1			1		1	
		MachXO2-256ZE		10.46	—	10.86	—	11.25	ns
		MachXO2-640ZE		10.52		10.92	—	11.32	ns
	Clock to Output – PIO Output	MachXO2-1200ZE		11.24		11.68	—	12.12	ns
t _{CO}	Register	MachXO2-2000ZE		11.27		11.71	—	12.16	ns
		MachXO2-4000ZE		11.28		11.78	—	12.28	ns
		MachXO2-7000ZE	—	11.22		11.76	—	12.30	ns
		MachXO2-256ZE	-0.21		-0.21	—	-0.21	—	ns
		MachXO2-640ZE	-0.22	—	-0.22	—	-0.22	—	ns
	Clock to Data Setup – PIO	MachXO2-1200ZE	-0.25	—	-0.25	—	-0.25	—	ns
t _{SU}	Input Register	MachXO2-2000ZE	-0.27	—	-0.27	—	-0.27	—	ns
		MachXO2-4000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33	—	-0.33		-0.33		ns
		MachXO2-256ZE	3.96		4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01		4.31	—	4.71	—	ns
÷	Clock to Data Hold – PIO Input	MachXO2-1200ZE	3.95		4.29	_	4.73	_	ns
t _H	Register	MachXO2-2000ZE	3.94	—	4.29	—	4.74	—	ns
		MachXO2-4000ZE	3.96		4.36	—	4.87	—	ns
		MachXO2-7000ZE	3.93		4.37	—	4.91		ns
		IVIACHAU2-7000ZE	3.93	—	4.37		4.91		

Over Recommended Operating Conditions

			-	-3	-	-2	- 1	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200ZE	0.66		0.68		0.80		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	0.68	—	0.70	—	0.83	—	ns
t _{HPLL}	Register	MachXO2-4000ZE	0.68	—	0.71	—	0.84	—	ns
		MachXO2-7000ZE	0.73	—	0.74	—	0.87	—	ns
-		MachXO2-1200ZE	5.14	—	5.69	—	6.20	—	ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	5.11	—	5.67	—	6.17	—	ns
^t SU_DELPLL	Input Register with Data Input Delay	MachXO2-4000ZE	5.27	—	5.84		6.35	—	ns
		MachXO2-7000ZE	5.15	—	5.71	—	6.23	—	ns
-		MachXO2-1200ZE	-1.36	—	-1.36	—	-1.36	—	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-1.35		-1.35		-1.35		ns
^t H_DELPLL		MachXO2-4000ZE	-1.43		-1.43		-1.43		ns
		MachXO2-7000ZE	-1.41		-1.41		-1.41		ns
Generic DDR	X1 Inputs with Clock and Data A	ligned at Pin Using P	CLK Pin	for Cloc	k Input -	- GDDR)	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.382		0.401	—	0.417	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2	0.670	—	0.684		0.693	—	UI
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X1 Inputs with Clock and Data Ce	entered at Pin Using PO	LK Pin f	for Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		1.319		1.412		1.462		ns
t _{HO}	Input Data Hold After CLK	All MachXO2	0.717	_	1.010		1.340		ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X2 Inputs with Clock and Data A	ligned at Pin Using P	LK Pin	for Cloc	k Input -	GDDR	2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		_	0.361		0.346	—	0.334	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.602		0.625		0.648		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	140		117	—	97	MHz
f _{SCLK}	SCLK Frequency		_	70		59	—	49	MHz
	X2 Inputs with Clock and Data Ce	entered at Pin Using P	LK Pin f	for Clock	Input –	GDDRX	2_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.472		0.672		0.865		ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.363	_	0.501		0.743		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-0400, MachXO2-1200/U and larger devices,		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		140		117	_	97	MHz
f _{SCLK}	SCLK Frequency			70		59	_	49	MHz
	4 Inputs with Clock and Data A	ligned at Pin Using PC	LK Pin	for Cloc	k Input -	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		_	0.307		0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.662		0.650		0.649	_	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	—	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	_	210		176	_	146	MHz
f _{SCLK}	SCLK Frequency		<u> </u>	53	_	44	—	37	MHz
JULIN		I	1				I		

			_	3	_	2	_	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR4	Inputs with Clock and Data Cer	ntered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	RX.EC	LK.Cent	tered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.434	—	0.535	_	0.630	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.385	—	0.395	—	0.463	—	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	420	_	352		292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	—	210	—	176	_	146	MHz
f _{SCLK}	SCLK Frequency			53		44		37	MHz
	uts – GDDR71_RX.ECLK.7.1 ^{9, 12}	2							
t _{DVA}	Input Data Valid After ECLK		—	0.307		0.316		0.326	UI
t _{DVE}	Input Data Hold After ECLK		0.662		0.650		0.649		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U and larger devices	_	420	_	352		292	Mbps
f _{DDR71}	DDR71 ECLK Frequency	and larger devices, bottom side only ¹¹	—	210	—	176	—	146	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)	bottom side only	_	60	_	50	_	42	MHz
Generic DDR	Outputs with Clock and Data A	ligned at Pin Using PC	LK Pin f	or Clock	k Input –	GDDRX	1_TX.S	CLK.Aliç	jned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		—	0.850	—	0.910	_	0.970	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides	_	0.850	_	0.910		0.970	ns
f _{DATA}	DDRX1 Output Data Speed		—	140	—	116	_	98	Mbps
f _{DDRX1}	DDRX1 SCLK frequency		—	70	—	58	_	49	MHz
	Outputs with Clock and Data Ce	ntered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		2.720	_	3.380		4.140		ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2	2.720		3.380	_	4.140		ns
f _{DATA}	DDRX1 Output Data Speed	devices, all sides	—	140	—	116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	70	_	58	_	49	MHz
Generic DDRX	(2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output			0.270		0.300		0.330	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U	_	0.270	_	0.300		0.330	ns
f _{DATA}	DDRX2 Serial Output Data Speed	and larger devices, top side only	_	280	_	234		194	Mbps
f _{DDRX2}	DDRX2 ECLK frequency		_	140	—	117	_	97	MHz
f _{SCLK}	SCLK Frequency		—	70	—	59	—	49	MHz

Pinout Information Summary

		Ма	achXO2-2	256		Ма	achXO2-6	640	MachXO2-640
	32 QFN ¹	48 QFN ³	64 ucBGA	100 TQFP	132 csBGA	48 QFN ³	100 TQFP	132 csBGA	144 TQFP
General Purpose I/O per Bank	•		•				•	•	
Bank 0	8	10	9	13	13	10	18	19	27
Bank 1	2	10	12	14	14	10	20	20	26
Bank 2	9	10	11	14	14	10	20	20	28
Bank 3	2	10	12	14	14	10	20	20	26
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Single Ended I/O	21	40	44	55	55	40	78	79	107
Differential I/O per Bank									
Bank 0	4	5	5	7	7	5	9	10	14
Bank 1	1	5	6	7	7	5	10	10	13
Bank 2	4	5	5	7	7	5	10	10	14
Bank 3	1	5	6	7	7	5	10	10	13
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Differential I/O	10	20	22	28	28	20	39	40	54
Dual Function I/O	22	25	27	29	29	25	29	29	33
High-speed Differential I/O		1						1	
Bank 0	0	0	0	0	0	0	0	0	7
Gearboxes									•
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	0	0	0	0	0	0	0	0	7
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	0	0	0	0	0	0	0	0	7
DQS Groups									
Bank 1	0	0	0	0	0	0	0	0	2
VCCIO Pins									
Bank 0	2	2	2	2	2	2	2	2	3
Bank 1	1	1	2	2	2	1	2	2	3
Bank 2	2	2	2	2	2	2	2	2	3
Bank 3	1	1	2	2	2	1	2	2	3
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
VCC	2	2	2	2	2	2	2	2	4
GND ²	2	1	8	8	8	1	8	10	12
NC	0	0	1	26	58	0	3	32	8
Reserved for Configuration	1	1	1	1	1	1	1	1	1

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

2. For 48 QFN package, exposed die pad is the device ground.

3. 48-pin QFN information is 'Advanced'.

		M	achXO2-120	00		MachXO2-1200U
	100 TQFP	132 csBGA	144 TQFP	25 WLCSP	32 QFN ¹	256 ftBGA
General Purpose I/O per Bank	•	•				
Bank 0	18	25	27	11	9	50
Bank 1	21	26	26	0	2	52
Bank 2	20	28	28	7	9	52
Bank 3	20	25	26	0	2	16
Bank 4	0	0	0	0	0	16
Bank 5	0	0	0	0	0	20
Total General Purpose Single Ended I/O	79	104	107	18	22	206
Differential I/O per Bank						
Bank 0	9	13	14	5	4	25
Bank 1	10	13	13	0	1	26
Bank 2	10	14	14	2	4	26
Bank 3	10	12	13	0	1	8
Bank 4	0	0	0	0	0	8
Bank 5	0	0	0	0	0	10
Total General Purpose Differential I/O	39	52	54	7	10	103
Dual Function I/O	31	33	33	18	22	33
High-speed Differential I/O						
Bank 0	4	7	7	0	0	14
Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	4	7	7	0	0	14
Number of 7:1 or 8:1 Input Gearbox Avail- able (Bank 2)	5	7	7	0	2	14
DQS Groups						
Bank 1	1	2	2	0	0	2
VCCIO Pins						
Bank 0	2	3	3	1	2	4
Bank 1	2	3	3	0	1	4
Bank 2	2	3	3	1	2	4
Bank 3	3	3	3	0	1	1
Bank 4	0	0	0	0	0	2
Bank 5	0	0	0	0	0	1
VCC	2	4	4	2	2	8
GND	8	10	12	2	2	24
NC	1	1	8	0	0	1
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	100	132	144	25	32	256
1. Lattice recommends soldering the centra						

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

				MachX	D2-4000			
	84 QFN	132 csBGA	144 TQFP	184 csBGA	256 caBGA	256 ftBGA	332 caBGA	484 fpBGA
General Purpose I/O per Bank								
Bank 0	27	25	27	37	50	50	68	70
Bank 1	10	26	29	37	52	52	68	68
Bank 2	22	28	29	39	52	52	70	72
Bank 3	0	7	9	10	16	16	24	24
Bank 4	9	8	10	12	16	16	16	16
Bank 5	0	10	10	15	20	20	28	28
Total General Purpose Single Ended I/O	68	104	114	150	206	206	274	278
Differential I/O per Bank								
Bank 0	13	13	14	18	25	25	34	35
Bank 1	4	13	14	18	26	26	34	34
Bank 2	11	14	14	19	26	26	35	36
Bank 3	0	3	4	4	8	8	12	12
Bank 4	4	4	5	6	8	8	8	8
Bank 5	0	5	5	7	10	10	14	14
Total General Purpose Differential I/O	32	52	56	72	103	103	137	139
Dual Function I/O	28	37	37	37	37	37	37	37
High-speed Differential I/O				•				
Bank 0	8	8	9	8	18	18	18	18
Gearboxes				•				
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	8	8	9	9	18	18	18	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	11	14	14	12	18	18	18	18
DQS Groups	1	1						
Bank 1	1	2	2	2	2	2	2	2
VCCIO Pins								
Bank 0	3	3	3	3	4	4	4	10
Bank 1	1	3	3	3	4	4	4	10
Bank 2	2	3	3	3	4	4	4	10
Bank 3	1	1	1	1	1	1	2	3
Bank 4	1	1	1	1	2	2	1	4
Bank 5	1	1	1	1	1	1	2	3
VCC	4	4	4	4	8	8	8	12
GND	4	10	12	16	24	24	27	48
NC	1	1	1	1	1	1	5	105
Reserved for configuration	1	1	1	1	1	1	1	1
liebel ved for bernigaration								

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1UWG49ITR1	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR50 ³	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR1K ²	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1TG100I	2112	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-2TG100I	2112	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-3TG100I	2112	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-1MG132I	2112	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-2MG132I	2112	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-3MG132I	2112	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-1TG144I	2112	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-2TG144I	2112	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-3TG144I	2112	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-1BG256I	2112	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-2BG256I	2112	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-3BG256I	2112	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-1FTG256I	2112	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-2FTG256I	2112	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-3FTG256I	2112	1.2 V	-3	Halogen-Free ftBGA	256	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100I	2112	1.2 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-5TG100I	2112	1.2 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-6TG100I	2112	1.2 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-4MG132I	2112	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-5MG132I	2112	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-6MG132I	2112	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-4TG144I	2112	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-5TG144I	2112	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-6TG144I	2112	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-4BG256I	2112	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-5BG256I	2112	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-6BG256I	2112	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-4FTG256I	2112	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-5FTG256I	2112	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-6FTG256I	2112	1.2 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484I	2112	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-5FG484I	2112	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-6FG484I	2112	1.2 V	-6	Halogen-Free fpBGA	484	IND

Date	Version	Section	Change Summary
January 2013	02.0	Introduction	Updated the total number IOs to include JTAGENB.
		Architecture	Supported Output Standards table – Added 3.3 V_{CCIO} (Typ.) to LVDS row.
			Changed SRAM CRC Error Detection to Soft Error Detection.
		DC and Switching Characteristics	Power Supply Ramp Rates table – Updated Units column for t _{RAMP} symbol.
			Added new Maximum sysIO Buffer Performance table.
			sysCLOCK PLL Timing table – Updated Min. column values for $f_{IN}, f_{OUT}, f_{OUT2}$ and f_{PFD} parameters. Added t_{SPO} parameter. Updated footnote 6.
			MachXO2 Oscillator Output Frequency table – Updated symbol name
			for t _{STABLEOSC} .
			DC Electrical Characteristics table – Updated conditions for ${\rm I}_{\rm IL,}~{\rm I}_{\rm IH}$ symbols.
			Corrected parameters tDQVBS and tDQVAS
			Corrected MachXO2 ZE parameters tDVADQ and tDVEDQ
		Pinout Information	Included the MachXO2-4000HE 184 csBGA package.
		Ordering Information	Updated part number.
April 2012	01.9	Architecture	Removed references to TN1200.
		Ordering Information	Updated the Device Status portion of the MachXO2 Part Number Description to include the 50 parts per reel for the WLCSP package.
			Added new part number and footnote 2 for LCMXO2-1200ZE- 1UWG25ITR50.
			Updated footnote 1 for LCMXO2-1200ZE-1UWG25ITR.
		Supplemental Information	Removed references to TN1200.
March 2012	01.8	Introduction	Added 32 QFN packaging information to Features bullets and MachXO2 Family Selection Guide table.
		DC and Switching Characteristics	Changed 'STANDBY' to 'USERSTDBY' in Standby Mode timing dia- gram.
		Pinout Information	Removed footnote from Pin Information Summary tables.
			Added 32 QFN package to Pin Information Summary table.
		Ordering Information	Updated Part Number Description and Ordering Information tables for 32 QFN package.
			Updated topside mark diagram in the Ordering Information section.