
E · Catite Semiconductor Corporation - <u>LCMX02-1200ZE-1TG144CR1 Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2014.112	
Product Status	Obsolete
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	107
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-1200ze-1tg144cr1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external V_{CC} supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external V_{CC} supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other.

The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.

The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

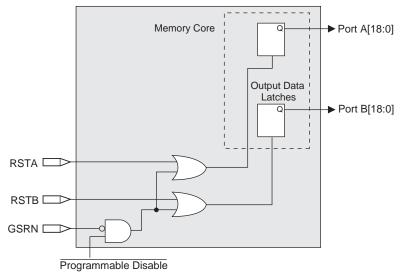
FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.


The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

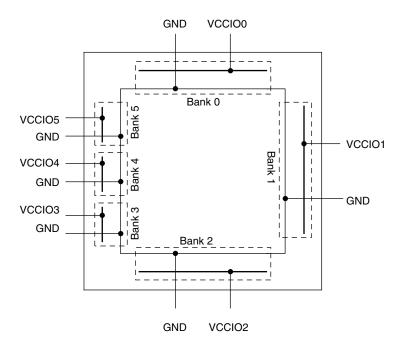
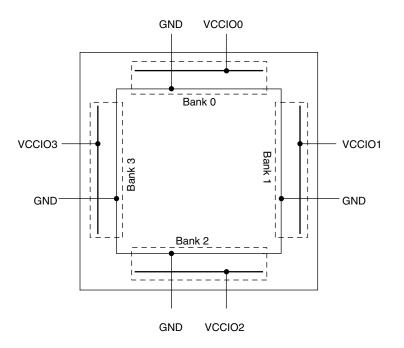



Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

Hardened Timer/Counter

MachXO2 devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-23. Timer/Counter Block Diagram

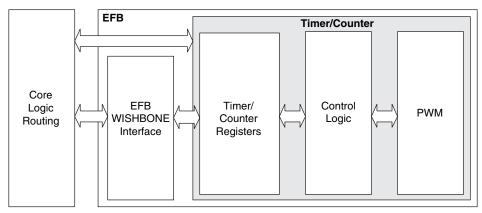


Table 2-17. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

For more details on these embedded functions, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

User Flash Memory (UFM)

MachXO2-640/U and higher density devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I²C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

Standby Mode and Power Saving Options

MachXO2 devices are available in three options for maximum flexibility: ZE, HC and HE devices. The ZE devices have ultra low static and dynamic power consumption. These devices use a 1.2 V core voltage that further reduces power consumption. The HC and HE devices are designed to provide high performance. The HC devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the HE devices operate at 1.2 V V_{CC}.

MachXO2 devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO2 devices support an ultra low power Stand-by mode. While most of these features are available in all three device types, these features are mainly intended for use with MachXO2 ZE devices to manage power consumption.

In the stand-by mode the MachXO2 devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO2 devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)	_	_	+175	μΑ
		Clamp OFF and $V_{IN} = V_{CCIO}$	-10		10	μA
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Leakage	Clamp OFF and V _{CCIO} –0.97 V < V _{IN} < V _{CCIO}	-175	_	—	μA
		Clamp OFF and 0 V < V _{IN} < V _{CCIO} –0.97 V			10	μA
		Clamp OFF and V _{IN} = GND	—	_	10	μΑ
		Clamp ON and 0 V < V_{IN} < V_{CCIO}	_	_	10	μΑ
I _{PU}	I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) < V_{IN} < V_{CCIO}	30		305	μA
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		_	μA
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30		_	μA
I _{BHLO}	Bus Hold Low Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_	_	305	μA
I _{BHHO}	Bus Hold High Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_	_	-309	μA
V _{BHT} ³	Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5	9	pF
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5.5	7	pF
		V _{CCIO} = 3.3 V, Hysteresis = Large	_	450	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Large	_	250	—	mV
		V _{CCIO} = 1.8 V, Hysteresis = Large	_	125	—	mV
V	Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large	_	100	—	mV
V _{HYST}	Trigger Inputs ⁵	V _{CCIO} = 3.3 V, Hysteresis = Small	—	250	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Small	—	150	—	mV
		V _{CCIO} = 1.8 V, Hysteresis = Small	—	60	—	mV
		V _{CCIO} = 1.5 V, Hysteresis = Small	_	40	—	mV

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to-low transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.

Static Supply Current – ZE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ. ⁴	Units
lcc		LCMXO2-256ZE	18	μΑ
		LCMXO2-640ZE	28	μΑ
	Core Power Supply	LCMXO2-1200ZE	56	μΑ
		LCMXO2-2000ZE	80	μA
		LCMXO2-4000ZE	124	μΑ
		LCMXO2-7000ZE	189	μΑ
I _{CCIO}	Bank Power Supply ⁵ $V_{CCIO} = 2.5 V$	All devices	1	μΑ

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Static Power Consumption Contribution of Different Components – ZE Devices

The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool.

Symbol Parameter		Тур.	Units
I _{DCBG}	Bandgap DC power contribution	101	μΑ
IDCPOR	POR DC power contribution	38	μΑ
IDCIOBANKCONTROLLER	DC power contribution per I/O bank controller	143	μΑ

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
1	Core Power Supply	LCMXO2-2000HC	4.80	mA
ICC		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Іссю	Bank Power Supply⁵ V _{CCIO} = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

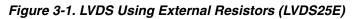
Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

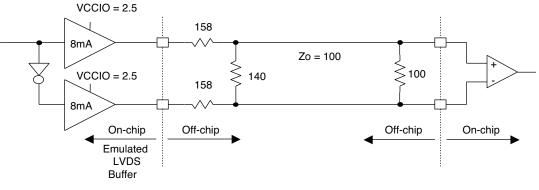
1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.


5. $T_J = 25$ °C, power supplies at nominal voltage.


6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

LVDS Emulation

MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

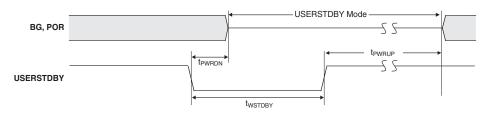
Parameter	Description	Тур.	Units			
Z _{OUT}	Output impedance	20	Ohms			
R _S	Driver series resistor	158	Ohms			
R _P	Driver parallel resistor	140	Ohms			
R _T	Receiver termination	100	Ohms			
V _{OH}	Output high voltage	1.43	V			
V _{OL}	Output low voltage	1.07	V			
V _{OD}	Output differential voltage	0.35	V			
V _{CM}	Output common mode voltage	1.25	V			
Z _{BACK}	Back impedance	100.5	Ohms			
I _{DC}	DC output current	6.03	mA			

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

MAX_PRI Tree	Description	Device All MachXO2 devices	Min.	Max.	Min.	Max.	Min.	Max.	Units
Frimary Clocks f _{MAX_PRI} [®] Frequer Tree turner Clock P		All MachXO2 devices							
f _{MAX_PRI} ⁸ Frequer Tree Clock P		All MachXO2 devices							
Tree turner turner		All MachXO2 devices							
	ulse Width for Primary		_	150	_	125	_	104	MHz
		All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	_	1250	_	1272	_	1296	ps
		MachXO2-640ZE		1161	_	1183	_	1206	ps
. Primarv	Clock Skew Within a	MachXO2-1200ZE	_	1213	_	1267	—	1322	ps
t _{SKEW_PRI} Device		MachXO2-2000ZE	_	1204	_	1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	_	1269	ps
		MachXO2-7000ZE	_	1243	_	1268	—	1296	ps
Edge Clock		1	I	L		L		L	
f _{MAX_EDGE⁸ Frequer}	ncy for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin Propaga	tion Delay								
t _{PD} Best ca through	se propagation delay one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O Pin Parar	meters (Using Primary	Clock without PLL)							
		MachXO2-256ZE		10.46		10.86		11.25	ns
		MachXO2-640ZE		10.52		10.92		11.32	ns
L Clock to	o Output – PIO Output	MachXO2-1200ZE	_	11.24	_	11.68	_	12.12	ns
t _{CO} Registe		MachXO2-2000ZE	_	11.27		11.71		12.16	ns
		MachXO2-4000ZE	_	11.28		11.78		12.28	ns
		MachXO2-7000ZE	_	11.22	_	11.76	_	12.30	ns
		MachXO2-256ZE	-0.21		-0.21		-0.21	_	ns
		MachXO2-640ZE	-0.22		-0.22		-0.22	_	ns
L Clock to	Data Setup – PIO	MachXO2-1200ZE	-0.25		-0.25		-0.25		ns
t _{SU} Input Re		MachXO2-2000ZE	-0.27		-0.27		-0.27		ns
		MachXO2-4000ZE	-0.31		-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33		-0.33		-0.33	_	ns
		MachXO2-256ZE	3.96	—	4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01	_	4.31	_	4.71	_	ns
Lock to	Data Hold – PIO Input	MachXO2-1200ZE	3.95	_	4.29	_	4.73	_	ns
t _H Registe		MachXO2-2000ZE	3.94	_	4.29	_	4.74	_	ns
		MachXO2-4000ZE	3.96	_	4.36	_	4.87	_	ns
		MachXO2-7000ZE	3.93	_	4.37		4.91	_	ns

Over Recommended Operating Conditions

			_	3	_	2	_	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR4	Inputs with Clock and Data Cer	ntered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	RX.EC	LK.Cent	tered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.434	—	0.535	_	0.630	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.385	—	0.395	—	0.463	—	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	420	_	352		292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	—	210	—	176	_	146	MHz
f _{SCLK}	SCLK Frequency			53		44		37	MHz
	uts – GDDR71_RX.ECLK.7.1 ^{9, 12}	2							
t _{DVA}	Input Data Valid After ECLK		—	0.307		0.316		0.326	UI
t _{DVE}	Input Data Hold After ECLK		0.662		0.650		0.649		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U	_	420	_	352		292	Mbps
f _{DDR71}	DDR71 ECLK Frequency	and larger devices, bottom side only ¹¹	—	210	—	176	—	146	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)	bottom side only	_	60	_	50	_	42	MHz
Generic DDR	Outputs with Clock and Data A	ligned at Pin Using PC	LK Pin f	or Clock	k Input –	GDDRX	1_TX.S	CLK.Aliç	jned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		—	0.850	—	0.910	_	0.970	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides	_	0.850	_	0.910		0.970	ns
f _{DATA}	DDRX1 Output Data Speed		—	140	—	116	_	98	Mbps
f _{DDRX1}	DDRX1 SCLK frequency		—	70	—	58	_	49	MHz
	Outputs with Clock and Data Ce	ntered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		2.720	_	3.380		4.140		ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2	2.720		3.380		4.140		ns
f _{DATA}	DDRX1 Output Data Speed	devices, all sides	—	140	—	116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	70	_	58	_	49	MHz
Generic DDRX	(2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output			0.270		0.300		0.330	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U	_	0.270	_	0.300		0.330	ns
f _{DATA}	DDRX2 Serial Output Data Speed	and larger devices, top side only	_	280	_	234		194	Mbps
f _{DDRX2}	DDRX2 ECLK frequency		_	140	—	117	_	97	MHz
f _{SCLK}	SCLK Frequency		—	70	—	59	—	49	MHz


MachXO2 Oscillator Output Frequency

Symbol	Parameter	Min.	Тур.	Max	Units
f	Oscillator Output Frequency (Commercial Grade Devices, 0 to 85°C)	125.685	133	140.315	MHz
¹ MAX Oscillator Output Frequency (Industrial Grade Devices, -40 °C to 100 °C)		124.355	133	141.645	MHz
t _{DT}	Output Clock Duty Cycle	43	50	57	%
t _{OPJIT} 1	Output Clock Period Jitter	0.01	0.012	0.02	UIPP
t _{STABLEOSC}	STDBY Low to Oscillator Stable	0.01	0.05	0.1	μs

1. Output Clock Period Jitter specified at 133 MHz. The values for lower frequencies will be smaller UIPP. The typical value for 133 MHz is 95 ps and for 2.08 MHz the typical value is 1.54 ns.

MachXO2 Standby Mode Timing – HC/HE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	_	9	ns
		LCMXO2-256		_		μs
		LCMXO2-640		_		μs
		LCMXO2-640U		_		μs
		LCMXO2-1200	20	_	50	μs
t _{PWRUP}	USERSTDBY Low to Power Up	LCMXO2-1200U				μs
		LCMXO2-2000		_		μs
		LCMXO2-2000U		_		μs
		LCMXO2-4000		_		μs
		LCMXO2-7000		_		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	18		—	ns

MachXO2 Standby Mode Timing – ZE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	—	13	ns
	LCMXO2-256		—		μs	
		LCMXO2-640		—		μs
	USERSTDBY Low to Power Up	LCMXO2-1200	20	—	50	μs
^t PWRUP		LCMXO2-2000		—		μs
		LCMXO2-4000		—		μs
		LCMXO2-7000		_		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	19			ns
t _{BNDGAPSTBL}	USERSTDBY High to Bandgap Stable	All		—	15	ns

I²C Port Timing Specifications^{1, 2}

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCL clock frequency	_	400	kHz

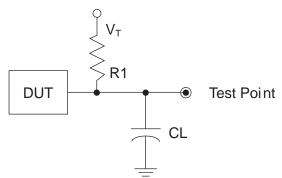
1. MachXO2 supports the following modes:

• Standard-mode (Sm), with a bit rate up to 100 kbit/s (user and configuration mode)

• Fast-mode (Fm), with a bit rate up to 400 kbit/s (user and configuration mode)

2. Refer to the I²C specification for timing requirements.

SPI Port Timing Specifications¹


Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCK clock frequency	_	45	MHz

1. Applies to user mode only. For configuration mode timing specifications, refer to sysCONFIG Port Timing Specifications table in this data sheet.

Switching Test Conditions

Figure 3-13 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

Table 3-5. Test Fixture Required Components,	Non-Terminated Interfaces
--	---------------------------

Test Condition	R1	CL	Timing Ref.	VT
		0pF	LVTTL, LVCMOS 3.3 = 1.5 V	—
			LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and LVCMOS settings (L -> H, H -> L)	∞		LVCMOS 1.8 = $V_{CCIO}/2$	—
			LVCMOS 1.5 = $V_{CCIO}/2$	—
			LVCMOS 1.2 = $V_{CCIO}/2$	—
LVTTL and LVCMOS 3.3 (Z -> H)			1.5 V	V _{OL}
LVTTL and LVCMOS 3.3 (Z -> L)			1.5 V	V _{OH}
Other LVCMOS (Z -> H)	188	0pF	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	opi	V _{CCIO} /2	V _{OH}
/TTL + LVCMOS (H -> Z)			V _{OH} – 0.15 V	V _{OL}
LVTTL + LVCMOS (L -> Z)]		V _{OL} – 0.15 V	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

	MachXO2-4000							
	84 QFN	132 csBGA	144 TQFP	184 csBGA	256 caBGA	256 ftBGA	332 caBGA	484 fpBGA
General Purpose I/O per Bank								
Bank 0	27	25	27	37	50	50	68	70
Bank 1	10	26	29	37	52	52	68	68
Bank 2	22	28	29	39	52	52	70	72
Bank 3	0	7	9	10	16	16	24	24
Bank 4	9	8	10	12	16	16	16	16
Bank 5	0	10	10	15	20	20	28	28
Total General Purpose Single Ended I/O	68	104	114	150	206	206	274	278
Differential I/O per Bank								
Bank 0	13	13	14	18	25	25	34	35
Bank 1	4	13	14	18	26	26	34	34
Bank 2	11	14	14	19	26	26	35	36
Bank 3	0	3	4	4	8	8	12	12
Bank 4	4	4	5	6	8	8	8	8
Bank 5	0	5	5	7	10	10	14	14
Total General Purpose Differential I/O	32	52	56	72	103	103	137	139
Dual Function I/O	28	37	37	37	37	37	37	37
High-speed Differential I/O				•				
Bank 0	8	8	9	8	18	18	18	18
Gearboxes				•				
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	8	8	9	9	18	18	18	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	11	14	14	12	18	18	18	18
DQS Groups	1	1						
Bank 1	1	2	2	2	2	2	2	2
VCCIO Pins								
Bank 0	3	3	3	3	4	4	4	10
Bank 1	1	3	3	3	4	4	4	10
Bank 2	2	3	3	3	4	4	4	10
Bank 3	1	1	1	1	1	1	2	3
Bank 4	1	1	1	1	2	2	1	4
Bank 5	1	1	1	1	1	1	2	3
VCC	4	4	4	4	8	8	8	12
GND	4	10	12	16	24	24	27	48
NC	1	1	1	1	1	1	5	105
Reserved for configuration	1	1	1	1	1	1	1	1
liebel ved for bernigaration								

_

	MachXO2-7000						
	144 TQFP	256 caBGA	256 ftBGA	332 caBGA	400 caBGA	484 fpBGA	
General Purpose I/O per Bank		1	1			1	
Bank 0	27	50	50	68	83	82	
Bank 1	29	52	52	70	84	84	
Bank 2	29	52	52	70	84	84	
Bank 3	9	16	16	24	28	28	
Bank 4	10	16	16	16	24	24	
Bank 5	10	20	20	30	32	32	
Total General Purpose Single Ended I/O	114	206	206	278	335	334	
Differential I/O per Bank							
Bank 0	14	25	25	34	42	41	
Bank 1	14	26	26	35	42	42	
Bank 2	14	26	26	35	42	42	
Bank 3	4	8	8	12	14	14	
Bank 4	5	8	8	8	12	12	
Bank 5	5	10	10	15	16	16	
Total General Purpose Differential I/O	56	103	103	139	168	167	
Dual Function I/O	37	37	37	37	37	37	
High-speed Differential I/O		-	-	-	-	-	
Bank 0	9	20	20	21	21	21	
Gearboxes							
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	9	20	20	21	21	21	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	14	20	20	21	21	21	
DQS Groups					•	•	
Bank 1	2	2	2	2	2	2	
VCCIO Pins							
Bank 0	3	4	4	4	5	10	
Bank 1	3	4	4	4	5	10	
Bank 2	3	4	4	4	5	10	
Bank 3	1	1	1	2	2	3	
Bank 4	1	2	2	1	2	4	
Bank 5	1	1	1	2	2	3	
200						4.0	
VCC	4	8	8	8	10	12	
GND	12	24	24	27	33	48	
NC	1	1	1	1	0	49	
Reserved for Configuration	1	1	1	1	1	1	
Total Count of Bonded Pins	144	256	256	332	400	484	

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84I	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	IND
LCMXO2-4000HC-5QN84I	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	IND
LCMXO2-4000HC-6QN84I	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	IND
LCMXO2-4000HC-4TG144I	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-5TG144I	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-6TG144I	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-4MG132I	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-5MG132I	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-6MG132I	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-4BG256I	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-5BG256I	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-6BG256I	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-4FTG256I	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-5FTG256I	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-6FTG256I	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-4BG332I	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-5BG332I	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-6BG332I	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-4FG484I	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-4000HC-5FG484I	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-4000HC-6FG484I	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HC-4TG144I	6864	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-5TG144I	6864	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-6TG144I	6864	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-4BG256I	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-5BG256I	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-6BG256I	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-4FTG256I	6864	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-5FTG256I	6864	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-6FTG256I	6864	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-4BG332I	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-5BG332I	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-6BG332I	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-4FG400I	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-5FG400I	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-6FG400I	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-4FG484I	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-7000HC-5FG484I	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-7000HC-6FG484I	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

MachXO2 Family Data Sheet Supplemental Information

April 2012

Data Sheet DS1035

For Further Information

A variety of technical notes for the MachXO2 family are available on the Lattice web site.

- TN1198, Power Estimation and Management for MachXO2 Devices
- TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide
- TN1201, Memory Usage Guide for MachXO2 Devices
- TN1202, MachXO2 sysIO Usage Guide
- TN1203, Implementing High-Speed Interfaces with MachXO2 Devices
- TN1204, MachXO2 Programming and Configuration Usage Guide
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices
- TN1206, MachXO2 SRAM CRC Error Detection Usage Guide
- TN1207, Using TraceID in MachXO2 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO2 Device Pinout Files
- Thermal Management document
- · Lattice design tools

For further information on interface standards, refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org
- PCI: www.pcisig.com

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO2 Family Data Sheet Revision History

March 2017

Data Sheet DS1035

Date	Version	Section	Change Summary
March 2017	3.3	DC and Switching Characteristics	Updated the Absolute Maximum Ratings section. Added standards.
			Updated the sysIO Recommended Operating Conditions section. Added standards.
			Updated the sysIO Single-Ended DC Electrical Characteristics sec- tion. Added standards.
			Updated the MachXO2 External Switching Characteristics – HC/HE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the MachXO2 External Switching Characteristics – ZE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the sysCONFIG Port Timing Specifications section. Corrected the t_{INITL} units from ns to μ s.
		Pinout Information	Updated the Signal Descriptions section. Revised the descriptions of the PROGRAMN, INITN, and DONE signals.
			Updated the Pinout Information Summary section. Added footnote to MachXO2-1200 32 QFN.
		Ordering Information	Updated the MachXO2 Part Number Description section. Corrected the MG184, BG256, FTG256 package information. Added "(0.8 mm Pitch)" to BG332.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. — Updated LCMXO2-1200ZE-1UWG25ITR50 footnote. — Corrected footnote numbering typo. — Added the LCMXO2-2000ZE-1UWG49ITR50 and LCMXO2- 2000ZE-1UWG49ITR1K part numbers. Updated/added footnote/s.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
December 2014	2.9	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
		DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for V_{CC} and V_{CCIO}
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Volt- age Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014	2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.
			Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.
		Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE- 1UWG49ITR part number package.
		Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1, 2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated foot- note.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.