Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 160 | | Number of Logic Elements/Cells | 1280 | | Total RAM Bits | 65536 | | Number of I/O | 107 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-1200ze-2tg144ir1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Introduction The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external V_{CC} supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external V_{CC} supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity. Figure 2-4. Slice Diagram For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: - WCK is CLK - WRE is from LSR - DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 - WAD [A:D] is a 4-bit address from slice 2 LUT input Table 2-2. Slice Signal Descriptions | Function | Туре | Signal Names | Description | |----------|------------------|----------------|----------------------------------------------------------------------| | Input | Data signal | A0, B0, C0, D0 | Inputs to LUT4 | | Input | Data signal | A1, B1, C1, D1 | Inputs to LUT4 | | Input | Multi-purpose | M0/M1 | Multi-purpose input | | Input | Control signal | CE | Clock enable | | Input | Control signal | LSR | Local set/reset | | Input | Control signal | CLK | System clock | | Input | Inter-PFU signal | FCIN | Fast carry in ¹ | | Output | Data signals | F0, F1 | LUT4 output register bypass signals | | Output | Data signals | Q0, Q1 | Register outputs | | Output | Data signals | OFX0 | Output of a LUT5 MUX | | Output | Data signals | OFX1 | Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice | | Output | Inter-PFU signal | FCO | Fast carry out ¹ | - 1. See Figure 2-3 for connection details. - 2. Requires two PFUs. Figure 2-6. Secondary High Fanout Nets for MachXO2 Devices #### sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The MachXO2-640U, MachXO2-1200/U and larger devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output. The MachXO2 sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO2 clock distribution network directly or general purpose routing resources can be used. The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7. The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. #### **Output Register Block** The output register block registers signals from the core of the device before they are passed to the sysIO buffers. #### Left, Top, Bottom Edges In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch. In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output. Figure 2-14 shows the output register block on the left, top and bottom edges. Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges) #### Right Edge The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges. In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output. Figure 2-15 shows the output register block on the right edge. Figure 2-17. Output Gearbox More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices. ## **DDR Memory Support** Certain PICs on the right edge of MachXO2-640U, MachXO2-1200/U and larger devices, have additional circuitry to allow the implementation of DDR memory interfaces. There are two groups of 14 or 12 PIOs each on the right edge with additional circuitry to implement DDR memory interfaces. This capability allows the implementation of up to 16-bit wide memory interfaces. One PIO from each group contains a control element, the DQS Read/Write Block, to facilitate the generation of clock and control signals (DQSR90, DQSW90, DDRCLKPOL and DATAVALID). These clock and control signals are distributed to the other PIO in the group through dedicated low skew routing. #### **DQS Read Write Block** Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Read Write block provides the required clock alignment for DDR memory interfaces. DQSR90 and DQSW90 signals are generated by the DQS Read Write block from the DQS input. In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. The MachXO2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This circuit changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each read cycle for the correct clock polarity. Prior to the read operation in DDR memories, DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit in the DQS Read Write block detects the first DQS rising edge after the preamble state and generates the DDRCLKPOL signal. This signal is used to control the polarity of the clock to the synchronizing registers. The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration signals (6-bit bus) from a DLL on the right edge of the device. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop. # sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, SSTL, HSTL, LVDS, BLVDS, MLVDS and LVPECL. Each bank is capable of supporting multiple I/O standards. In the MachXO2 devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) and referenced input buffers (SSTL and HSTL) are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} . In addition, each bank has a voltage reference, V_{REF} which allows the use of referenced input buffers independent of the bank V_{CCIO} . MachXO2-256 and MachXO2-640 devices contain single-ended ratioed input buffers and single-ended output buffers with complementary outputs on all the I/O banks. Note that the single-ended input buffers on these devices do not contain PCI clamps. In addition to the single-ended I/O buffers these two devices also have differential and referenced input buffers on all I/Os. The I/Os are arranged in pairs, the two pads in the pair are described as "T" and "C", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer. Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks Figure 2-21. PC Core Block Diagram Table 2-15 describes the signals interfacing with the I²C cores. Table 2-15. I'C Core Signal Description | Signal Name | I/O | Description | |-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | i2c_scl | Bi-directional | Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device. | | i2c_sda | Bi-directional | Bi-directional data line of the I ² C core. The signal is an output when data is transmitted from the I ² C core. The signal is an input when data is received into the I ² C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device. | | i2c_irqo | Output | Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions. | | cfg_wake | Output | Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I ² C Tab. | | cfg_stdby | Output | Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I ² C Tab. | #### **Hardened SPI IP Core** Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions: - · Configurable Master and Slave modes - · Full-Duplex data transfer - Mode fault error flag with CPU interrupt capability - · Double-buffered data register - · Serial clock with programmable polarity and phase - · LSB First or MSB First Data Transfer - Interface to custom logic through 8-bit WISHBONE interface ## **Configuration and Testing** This section describes the configuration and testing features of the MachXO2 family. #### IEEE 1149.1-Compliant Boundary Scan Testability All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards. For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology. #### **Device Configuration** All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device: - Internal Flash Download - 2. JTAG - 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory - 4. System microprocessor to drive a serial slave SPI port (SSPI mode) - 5. Standard I²C Interface to system microprocessor Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly. The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os. Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. #### TransFR (Transparent Field Reconfiguration) TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details. ## **DC Electrical Characteristics** #### **Over Recommended Operating Conditions** | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|--------------------------|-------| | | | Clamp OFF and V _{CCIO} < V _{IN} < V _{IH} (MAX) | _ | _ | +175 | μΑ | | | | Clamp OFF and V _{IN} = V _{CCIO} | -10 | _ | 10 | μΑ | | I _{IL} , I _{IH} ^{1, 4} | Input or I/O Leakage | Clamp OFF and V_{CCIO} –0.97 V < V_{IN} < V_{CCIO} | -175 | _ | _ | μΑ | | 12- 111 | | Clamp OFF and 0 V < V _{IN} < V _{CCIO} -0.97 V | _ | _ | 10 | μΑ | | | | Clamp OFF and V _{IN} = GND | _ | _ | 10 | μΑ | | | | Clamp ON and 0 V < V _{IN} < V _{CCIO} | _ | _ | 10 | μΑ | | I _{PU} | I/O Active Pull-up Current | 0 < V _{IN} < 0.7 V _{CCIO} | -30 | _ | -309 | μΑ | | I _{PD} | I/O Active Pull-down
Current | V _{IL} (MAX) < V _{IN} < V _{CCIO} | 30 | _ | 305 | μΑ | | I _{BHLS} | Bus Hold Low sustaining current | $V_{IN} = V_{IL} (MAX)$ | 30 | _ | _ | μΑ | | I _{BHHS} | Bus Hold High sustaining current | $V_{IN} = 0.7V_{CCIO}$ | -30 | _ | _ | μΑ | | I _{BHLO} | Bus Hold Low Overdrive current | $0 \le V_{IN} \le V_{CCIO}$ | _ | _ | 305 | μΑ | | Івнно | Bus Hold High Overdrive current | $0 \le V_{IN} \le V_{CCIO}$ | _ | _ | -309 | μΑ | | V _{BHT} ³ | Bus Hold Trip Points | | V _{IL}
(MAX) | _ | V _{IH}
(MIN) | V | | C1 | I/O Capacitance ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$ | 3 | 5 | 9 | pF | | C2 | Dedicated Input
Capacitance ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$ | 3 | 5.5 | 7 | pF | | | | V _{CCIO} = 3.3 V, Hysteresis = Large | _ | 450 | _ | mV | | | | V _{CCIO} = 2.5 V, Hysteresis = Large | _ | 250 | _ | mV | | | | V _{CCIO} = 1.8 V, Hysteresis = Large | — | 125 | _ | mV | | V | Hysteresis for Schmitt | V _{CCIO} = 1.5 V, Hysteresis = Large | _ | 100 | _ | mV | | V _{HYST} | Trigger Inputs ⁵ | V _{CCIO} = 3.3 V, Hysteresis = Small | | 250 | _ | mV | | | | V _{CCIO} = 2.5 V, Hysteresis = Small | | 150 | | mV | | | | V _{CCIO} = 1.8 V, Hysteresis = Small | _ | 60 | _ | mV | | | | V _{CCIO} = 1.5 V, Hysteresis = Small | _ | 40 | _ | mV | ^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. ^{2.} T_A 25 °C, f = 1.0 MHz. ^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document. ^{4.} When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to-low transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, V_{IH} must be less than or equal to V_{CCIO}. ^{5.} With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide. # sysIO Single-Ended DC Electrical Characteristics^{1, 2} | Input/Output | 1 | / _{IL} | VI | Н | V _{OL} Max. | . V _{OH} Min. I _{OL} Max | | I _{OH} Max.⁴ | | | |-----------------|-----------------------|--------------------------|--------------------------|-------------|----------------------|--|---------------------|-----------------------|----|-----| | Standard | Min. (V) ³ | Max. (V) | Min. (V) | Max. (V) | (V) | (V) | (mA) | (mA) | | | | | | | | | | | 4 | -4 | | | | | | | | | | | 8 | -8 | | | | LVCMOS 3.3 | -0.3 | 0.8 | 2.0 | 3.6 | 0.4 | V _{CCIO} – 0.4 | 12 | -12 | | | | LVTTL | -0.5 | 0.6 | 2.0 | 3.0 | | | 16 | -16 | | | | | | | | | | | 24 | -24 | | | | | | | | | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | | | | | | 4 | -4 | | | | | | | | | 0.4 | V _{CCIO} – 0.4 | 8 | -8 | | | | LVCMOS 2.5 | -0.3 | 0.7 | 1.7 3.6 | VCCIO - 0.4 | 12 | -12 | | | | | | | | | | | | | 16 | -16 | | | | | | | | | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | | | | | | 4 | -4 | | | | LVCMOS 1.8 | -0.3 | 0.35V _{CCIO} | 0.65V _{CCIO} | 3.6 | 0.4 | V _{CCIO} - 0.4 | 8 | -8 | | | | LVCIVIOS 1.0 | -0.5 | 0.33 V CCIO | 0.03 V CCIO | 3.0 | 0.0 | | | | 12 | -12 | | | | | | | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | | | | 0.4 | V _{CCIO} - 0.4 | 4 | -4 | | | | LVCMOS 1.5 | -0.3 | 0.35V _{CCIO} | 0.65V _{CCIO} | 3.6 | 0.4 | VCCIO - 0.4 | 8 | -8 | | | | | | | | | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | | | | 0.4 | V _{CCIO} - 0.4 | 4 | -2 | | | | LVCMOS 1.2 | -0.3 | 0.35V _{CCIO} | 0.65V _{CCIO} | 3.6 | 0.4 | 4 CCIO 0:4 | 8 | -6 | | | | | | | | | 0.2 | V _{CCIO} – 0.2 | 0.1 | -0.1 | | | | PCI | -0.3 | 0.3V _{CCIO} | 0.5V _{CCIO} | 3.6 | 0.1V _{CCIO} | 0.9V _{CCIO} | 1.5 | -0.5 | | | | SSTL25 Class I | -0.3 | V _{REF} – 0.18 | V _{REF} + 0.18 | 3.6 | 0.54 | V _{CCIO} - 0.62 | 8 | 8 | | | | SSTL25 Class II | -0.3 | V _{REF} – 0.18 | V _{REF} + 0.18 | 3.6 | NA | NA | NA | NA | | | | SSTL18 Class I | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | 3.6 | 0.40 | V _{CCIO} - 0.40 | 8 | 8 | | | | SSTL18 Class II | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | 3.6 | NA | NA | NA | NA | | | | HSTL18 Class I | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.40 | V _{CCIO} - 0.40 | 8 | 8 | | | | HSTL18 Class II | -0.3 | V _{REF} - 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS25R33 | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS18R33 | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS18R25 | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS15R33 | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS15R25 | -0.3 | V _{REF} - 0.1 | V _{REF} + 0.1 | 3.6 | NA | NA | NA | NA | | | | LVCMOS12R33 | -0.3 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.40 | NA Open
Drain | 24, 16, 12,
8, 4 | NA Open
Drain | | | | LVCMOS12R25 | -0.3 | V _{REF} - 0.1 | V _{REF} + 0.1 | 3.6 | 0.40 | NA Open
Drain | 16, 12, 8, 4 | NA Open
Drain | | | | LVCMOS10R33 | -0.3 | V _{REF} - 0.1 | V _{REF} + 0.1 | 3.6 | 0.40 | NA Open
Drain | 24, 16, 12,
8, 4 | NA Open
Drain | | | # MachXO2 External Switching Characteristics – HC/HE Devices^{1, 2, 3, 4, 5, 6, 7} ## **Over Recommended Operating Conditions** | | | | _ | 6 | _ | 5 | _ | 4 | | |------------------------------------|---|---------------------------------|-------|------|-------|------|-------|------|-------| | Parameter | Description | Device | Min. | Max. | Min. | Max. | Min. | Max. | Units | | Clocks | | | • | • | • | | • | | • | | Primary Clo | ocks | | | | | | | | | | f _{MAX_PRI} 8 | Frequency for Primary Clock
Tree | All MachXO2 devices | _ | 388 | _ | 323 | _ | 269 | MHz | | t _{W_PRI} | Clock Pulse Width for Primary Clock | All MachXO2 devices | 0.5 | _ | 0.6 | _ | 0.7 | _ | ns | | | | MachXO2-256HC-HE | _ | 912 | _ | 939 | _ | 975 | ps | | | | MachXO2-640HC-HE | _ | 844 | _ | 871 | _ | 908 | ps | | | Primary Clock Skew Within a | MachXO2-1200HC-HE | _ | 868 | _ | 902 | _ | 951 | ps | | ^t SKEW_PRI | Device | MachXO2-2000HC-HE | _ | 867 | _ | 897 | _ | 941 | ps | | | | MachXO2-4000HC-HE | _ | 865 | _ | 892 | _ | 931 | ps | | | | MachXO2-7000HC-HE | _ | 902 | _ | 942 | _ | 989 | ps | | Edge Clock | | | • | • | • | | • | | , | | f _{MAX_EDGE} ⁸ | Frequency for Edge Clock | MachXO2-1200 and larger devices | _ | 400 | _ | 333 | _ | 278 | MHz | | Pin-LUT-Pin | Propagation Delay | • | II. | II. | II. | | • | | | | t _{PD} | Best case propagation delay through one LUT-4 | All MachXO2 devices | _ | 6.72 | _ | 6.96 | _ | 7.24 | ns | | General I/O | Pin Parameters (Using Primar | y Clock without PLL) | • | • | | | • | | , | | | | MachXO2-256HC-HE | _ | 7.13 | _ | 7.30 | _ | 7.57 | ns | | | | MachXO2-640HC-HE | _ | 7.15 | _ | 7.30 | _ | 7.57 | ns | | | Clock to Output – PIO Output | MachXO2-1200HC-HE | _ | 7.44 | _ | 7.64 | _ | 7.94 | ns | | t _{CO} | Register | MachXO2-2000HC-HE | — | 7.46 | — | 7.66 | _ | 7.96 | ns | | | | MachXO2-4000HC-HE | _ | 7.51 | _ | 7.71 | _ | 8.01 | ns | | | | MachXO2-7000HC-HE | — | 7.54 | — | 7.75 | _ | 8.06 | ns | | | | MachXO2-256HC-HE | -0.06 | _ | -0.06 | _ | -0.06 | _ | ns | | | | MachXO2-640HC-HE | -0.06 | — | -0.06 | _ | -0.06 | _ | ns | | + . | Clock to Data Setup - PIO | MachXO2-1200HC-HE | -0.17 | | -0.17 | _ | -0.17 | _ | ns | | t _{SU} | Input Register | MachXO2-2000HC-HE | -0.20 | _ | -0.20 | _ | -0.20 | _ | ns | | | | MachXO2-4000HC-HE | -0.23 | — | -0.23 | — | -0.23 | _ | ns | | | | MachXO2-7000HC-HE | -0.23 | — | -0.23 | — | -0.23 | _ | ns | | | | MachXO2-256HC-HE | 1.75 | _ | 1.95 | | 2.16 | _ | ns | | | | MachXO2-640HC-HE | 1.75 | _ | 1.95 | _ | 2.16 | _ | ns | | + | Clock to Data Hold – PIO Input | MachXO2-1200HC-HE | 1.88 | _ | 2.12 | _ | 2.36 | _ | ns | | t _H | Register | MachXO2-2000HC-HE | 1.89 | _ | 2.13 | _ | 2.37 | _ | ns | | | | MachXO2-4000HC-HE | 1.94 | _ | 2.18 | _ | 2.43 | _ | ns | | | | MachXO2-7000HC-HE | 1.98 | _ | 2.23 | _ | 2.49 | _ | ns | | | | | _ | -6 | _ | 5 | _ | 4 | | |------------------------|--------------------------------------|---|---|-----------|-----------|-------|---------|---------|------------------------| | Parameter | Description | Device | Min. | Max. | Min. | Max. | Min. | Max. | Units | | | - | MachXO2-1200HC-HE | 0.41 | _ | 0.48 | _ | 0.55 | _ | ns | | | Clock to Data Hold – PIO Input | MachXO2-2000HC-HE | 0.42 | _ | 0.49 | _ | 0.56 | _ | ns | | t _{HPLL} | Register | MachXO2-4000HC-HE | 0.43 | | 0.50 | _ | 0.58 | _ | ns | | | | MachXO2-1200HC-HE 0.41 — 0.48 — 0.55 — MachXO2-2000HC-HE 0.42 — 0.49 — 0.56 — MachXO2-4000HC-HE 0.43 — 0.50 — 0.58 — MachXO2-7000HC-HE 0.46 — 0.54 — 0.62 — MachXO2-1200HC-HE 2.88 — 3.19 — 3.72 — MachXO2-2000HC-HE 2.87 — 3.18 — 3.70 — MachXO2-2000HC-HE 2.87 — 3.18 — 3.70 — MachXO2-4000HC-HE 2.96 — 3.28 — 3.81 — MachXO2-7000HC-HE 3.05 — 3.35 — 3.87 — MachXO2-7000HC-HE 0.83 — 0.83 — 0.83 — MachXO2-2000HC-HE 0.83 — 0.83 — 0.83 — MachXO2-2000HC-HE 0.87 — 0.87 — 0.87 — | ns | | | | | | | | | | MachXO2-1200HC-HE | 2.88 | | 3.19 | _ | 3.72 | _ | ns | | | Clock to Data Setup – PIO | MachXO2-2000HC-HE | 2.87 | _ | 3.18 | _ | 3.70 | _ | ns | | t _{SU_DELPLL} | Input Register with Data Input Delay | MachXO2-4000HC-HE | 2.96 | _ | 3.28 | _ | 3.81 | _ | ns | | | | MachXO2-7000HC-HE | 3.05 | _ | 3.35 | _ | 3.87 | _ | ns | | | | MachXO2-1200HC-HE | O2-1200HC-HE -0.83 - -0.83 - -0.83 - O2-2000HC-HE -0.83 - -0.83 - -0.83 - O2-4000HC-HE -0.87 - -0.87 - -0.87 - O2-7000HC-HE -0.91 - -0.91 - -0.91 - | | ns | | | | | | | Clock to Data Hold – PIO Input | MachXO2-2000HC-HE | -0.83 | _ | -0.83 | _ | -0.83 | _ | ns | | t _{H_DELPLL} | Register with Input Data Delay | MachXO2-4000HC-HE | -0.87 | _ | -0.87 | _ | -0.87 | _ | ns | | | | MachXO2-7000HC-HE | -0.91 | _ | -0.91 | _ | -0.91 | _ | ns | | Generic DDF | RX1 Inputs with Clock and Data | Aligned at Pin Using PC | LK Pin | for Cloc | k Input - | GDDR | (1_RX.S | CLK.Ali | gned ^{9, 12} | | t _{DVA} | Input Data Valid After CLK | | _ | 0.317 | | 0.344 | _ | 0.368 | UI | | t _{DVE} | Input Data Hold After CLK | All MachXO2 devices, | 0.742 | | 0.702 | — | 0.668 | — | UI | | f _{DATA} | DDRX1 Input Data Speed | all sides | — | 300 | — | 250 | — | 208 | Mbps | | f _{DDRX1} | DDRX1 SCLK Frequency | | _ | 150 | _ | 125 | _ | 104 | MHz | | Generic DDF | RX1 Inputs with Clock and Data C | entered at Pin Using PC | LK Pin f | or Clock | Input – | GDDRX | 1_RX.SC | LK.Cen | tered ^{9, 12} | | t _{SU} | Input Data Setup Before CLK | | 0.566 | _ | 0.560 | _ | 0.538 | _ | ns | | t _{HO} | Input Data Hold After CLK | 1 | 0.778 | | 0.879 | _ | 1.090 | _ | ns | | f _{DATA} | DDRX1 Input Data Speed | all sides | _ | 300 | _ | 250 | _ | 208 | Mbps | | f _{DDRX1} | DDRX1 SCLK Frequency | | _ | 150 | _ | 125 | _ | 104 | MHz | | Generic DDF | • | Aligned at Pin Using PC | LK Pin f | for Clock | k Input – | GDDRX | 2_RX.E | CLK.Ali | gned ^{9, 12} | | t _{DVA} | Input Data Valid After CLK | | _ | 0.316 | _ | 0.342 | _ | 0.364 | UI | | t _{DVE} | Input Data Hold After CLK | MachXO2-640U, | 0.710 | | 0.675 | _ | 0.679 | _ | UI | | f _{DATA} | DDRX2 Serial Input Data
Speed | larger devices, | _ | 664 | _ | 554 | _ | 462 | Mbps | | f _{DDRX2} | DDRX2 ECLK Frequency | bottom side only11 | _ | 332 | _ | 277 | _ | 231 | MHz | | f _{SCLK} | SCLK Frequency | | — | 166 | — | 139 | — | 116 | MHz | | Generic DDF | XX2 Inputs with Clock and Data C | entered at Pin Using PC | LK Pin f | or Clock | Input – | GDDRX | 2_RX.EC | LK.Cent | tered ^{9, 12} | | t _{SU} | Input Data Setup Before CLK | | 0.233 | | 0.219 | _ | 0.198 | _ | ns | | t _{HO} | Input Data Hold After CLK | MachXO2-640U, | 0.287 | _ | 0.287 | _ | 0.344 | _ | ns | | f _{DATA} | DDRX2 Serial Input Data
Speed | MachXO2-1200/U and larger devices, | _ | 664 | _ | 554 | _ | 462 | Mbps | | f _{DDRX2} | DDRX2 ECLK Frequency | bottom side only ¹¹ | _ | 332 | _ | 277 | _ | 231 | MHz | | f _{SCLK} | SCLK Frequency | | _ | 166 | _ | 139 | _ | 116 | MHz | | | | M | achXO2-120 | 00 | | MachXO2-1200U | |---|----------|-----------|------------|----------|---------------------|---------------| | | 100 TQFP | 132 csBGA | 144 TQFP | 25 WLCSP | 32 QFN ¹ | 256 ftBGA | | General Purpose I/O per Bank | 1 | | | | | L | | Bank 0 | 18 | 25 | 27 | 11 | 9 | 50 | | Bank 1 | 21 | 26 | 26 | 0 | 2 | 52 | | Bank 2 | 20 | 28 | 28 | 7 | 9 | 52 | | Bank 3 | 20 | 25 | 26 | 0 | 2 | 16 | | Bank 4 | 0 | 0 | 0 | 0 | 0 | 16 | | Bank 5 | 0 | 0 | 0 | 0 | 0 | 20 | | Total General Purpose Single Ended I/O | 79 | 104 | 107 | 18 | 22 | 206 | | Differential I/O per Bank | | | | | | | | Bank 0 | 9 | 13 | 14 | 5 | 4 | 25 | | Bank 1 | 10 | 13 | 13 | 0 | 1 | 26 | | Bank 2 | 10 | 14 | 14 | 2 | 4 | 26 | | Bank 3 | 10 | 12 | 13 | 0 | 1 | 8 | | Bank 4 | 0 | 0 | 0 | 0 | 0 | 8 | | Bank 5 | 0 | 0 | 0 | 0 | 0 | 10 | | Total General Purpose Differential I/O | 39 | 52 | 54 | 7 | 10 | 103 | | Dual Function I/O | 31 | 33 | 33 | 18 | 22 | 33 | | High-speed Differential I/O | | | | | | l | | Bank 0 | 4 | 7 | 7 | 0 | 0 | 14 | | Gearboxes | 1 | l | | | | L | | Number of 7:1 or 8:1 Output Gearbox
Available (Bank 0) | 4 | 7 | 7 | 0 | 0 | 14 | | Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) | 5 | 7 | 7 | 0 | 2 | 14 | | DQS Groups | | | | | | | | Bank 1 | 1 | 2 | 2 | 0 | 0 | 2 | | VCCIO Pins | | | | | | | | Bank 0 | 2 | 3 | 3 | 1 | 2 | 4 | | Bank 1 | 2 | 3 | 3 | 0 | 1 | 4 | | Bank 2 | 2 | 3 | 3 | 1 | 2 | 4 | | Bank 3 | 3 | 3 | 3 | 0 | 1 | 1 | | Bank 4 | 0 | 0 | 0 | 0 | 0 | 2 | | Bank 5 | 0 | 0 | 0 | 0 | 0 | 1 | | VCC | 2 | 4 | 4 | 2 | 2 | 8 | | GND | 8 | 10 | 12 | 2 | 2 | 24 | | NC | 1 | 1 | 8 | 0 | 0 | 1 | | Reserved for Configuration | 1 | 1 | 1 | 1 | 1 | 1 | | Total Count of Bonded Pins | 100 | 132 | 144 | 25 | 32 | 256 | | 1 Lattice recommends coldering the centre | | l . | | | | | ^{1.} Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance. #### For Further Information For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files. ## **Thermal Management** Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values. #### For Further Information For further information regarding Thermal Management, refer to the following: - Thermal Management document - TN1198, Power Estimation and Management for MachXO2 Devices - The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |------------------------|------|----------------|------------|--------------------|-------|-------| | LCMXO2-2000UHC-4FG484C | 2112 | 2.5 V / 3.3 V | -4 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-2000UHC-5FG484C | 2112 | 2.5 V / 3.3 V | - 5 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-2000UHC-6FG484C | 2112 | 2.5 V / 3.3 V | -6 | Halogen-Free fpBGA | 484 | COM | | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |------------------------|------|----------------|----------------|--------------------|-------|-------| | LCMXO2-4000HC-4QN84C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free QFN | 84 | СОМ | | LCMXO2-4000HC-5QN84C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free QFN | 84 | COM | | LCMXO2-4000HC-6QN84C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free QFN | 84 | COM | | LCMXO2-4000HC-4MG132C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free csBGA | 132 | COM | | LCMXO2-4000HC-5MG132C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free csBGA | 132 | COM | | LCMXO2-4000HC-6MG132C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free csBGA | 132 | COM | | LCMXO2-4000HC-4TG144C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free TQFP | 144 | COM | | LCMXO2-4000HC-5TG144C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free TQFP | 144 | COM | | LCMXO2-4000HC-6TG144C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free TQFP | 144 | COM | | LCMXO2-4000HC-4BG256C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free caBGA | 256 | COM | | LCMXO2-4000HC-5BG256C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free caBGA | 256 | COM | | LCMXO2-4000HC-6BG256C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free caBGA | 256 | COM | | LCMXO2-4000HC-4FTG256C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-4000HC-5FTG256C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-4000HC-6FTG256C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-4000HC-4BG332C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free caBGA | 332 | COM | | LCMXO2-4000HC-5BG332C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free caBGA | 332 | COM | | LCMXO2-4000HC-6BG332C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free caBGA | 332 | COM | | LCMXO2-4000HC-4FG484C | 4320 | 2.5 V / 3.3 V | -4 | Halogen-Free fpBGA | 484 | СОМ | | LCMXO2-4000HC-5FG484C | 4320 | 2.5 V / 3.3 V | - 5 | Halogen-Free fpBGA | 484 | СОМ | | LCMXO2-4000HC-6FG484C | 4320 | 2.5 V / 3.3 V | -6 | Halogen-Free fpBGA | 484 | COM | # Ordering Information MachXO2 Family Data Sheet | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |-----------------------|------|----------------|------------|--------------------|-------|-------| | LCMXO2-4000HE-6BG332C | 4320 | 1.2 V | -6 | Halogen-Free caBGA | 332 | COM | | LCMXO2-4000HE-4FG484C | 4320 | 1.2 V | -4 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-4000HE-5FG484C | 4320 | 1.2 V | - 5 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-4000HE-6FG484C | 4320 | 1.2 V | -6 | Halogen-Free fpBGA | 484 | COM | | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |------------------------|------|----------------|------------|--------------------|-------|-------| | LCMXO2-7000HE-4TG144C | 6864 | 1.2 V | -4 | Halogen-Free TQFP | 144 | COM | | LCMXO2-7000HE-5TG144C | 6864 | 1.2 V | - 5 | Halogen-Free TQFP | 144 | COM | | LCMXO2-7000HE-6TG144C | 6864 | 1.2 V | -6 | Halogen-Free TQFP | 144 | COM | | LCMXO2-7000HE-4BG256C | 6864 | 1.2 V | -4 | Halogen-Free caBGA | 256 | COM | | LCMXO2-7000HE-5BG256C | 6864 | 1.2 V | - 5 | Halogen-Free caBGA | 256 | COM | | LCMXO2-7000HE-6BG256C | 6864 | 1.2 V | -6 | Halogen-Free caBGA | 256 | COM | | LCMXO2-7000HE-4FTG256C | 6864 | 1.2 V | -4 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-7000HE-5FTG256C | 6864 | 1.2 V | - 5 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-7000HE-6FTG256C | 6864 | 1.2 V | -6 | Halogen-Free ftBGA | 256 | COM | | LCMXO2-7000HE-4BG332C | 6864 | 1.2 V | -4 | Halogen-Free caBGA | 332 | COM | | LCMXO2-7000HE-5BG332C | 6864 | 1.2 V | - 5 | Halogen-Free caBGA | 332 | COM | | LCMXO2-7000HE-6BG332C | 6864 | 1.2 V | -6 | Halogen-Free caBGA | 332 | COM | | LCMXO2-7000HE-4FG484C | 6864 | 1.2 V | -4 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-7000HE-5FG484C | 6864 | 1.2 V | - 5 | Halogen-Free fpBGA | 484 | COM | | LCMXO2-7000HE-6FG484C | 6864 | 1.2 V | -6 | Halogen-Free fpBGA | 484 | COM | # High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |------------------------|------|----------------|------------|--------------------|-------|-------| | LCMXO2-2000HE-4TG100I | 2112 | 1.2 V | -4 | Halogen-Free TQFP | 100 | IND | | LCMXO2-2000HE-5TG100I | 2112 | 1.2 V | - 5 | Halogen-Free TQFP | 100 | IND | | LCMXO2-2000HE-6TG100I | 2112 | 1.2 V | -6 | Halogen-Free TQFP | 100 | IND | | LCMXO2-2000HE-4MG132I | 2112 | 1.2 V | -4 | Halogen-Free csBGA | 132 | IND | | LCMXO2-2000HE-5MG132I | 2112 | 1.2 V | - 5 | Halogen-Free csBGA | 132 | IND | | LCMXO2-2000HE-6MG132I | 2112 | 1.2 V | -6 | Halogen-Free csBGA | 132 | IND | | LCMXO2-2000HE-4TG144I | 2112 | 1.2 V | -4 | Halogen-Free TQFP | 144 | IND | | LCMXO2-2000HE-5TG144I | 2112 | 1.2 V | - 5 | Halogen-Free TQFP | 144 | IND | | LCMXO2-2000HE-6TG144I | 2112 | 1.2 V | -6 | Halogen-Free TQFP | 144 | IND | | LCMXO2-2000HE-4BG256I | 2112 | 1.2 V | -4 | Halogen-Free caBGA | 256 | IND | | LCMXO2-2000HE-5BG256I | 2112 | 1.2 V | - 5 | Halogen-Free caBGA | 256 | IND | | LCMXO2-2000HE-6BG256I | 2112 | 1.2 V | -6 | Halogen-Free caBGA | 256 | IND | | LCMXO2-2000HE-4FTG256I | 2112 | 1.2 V | -4 | Halogen-Free ftBGA | 256 | IND | | LCMXO2-2000HE-5FTG256I | 2112 | 1.2 V | - 5 | Halogen-Free ftBGA | 256 | IND | | LCMXO2-2000HE-6FTG256I | 2112 | 1.2 V | -6 | Halogen-Free ftBGA | 256 | IND | | Part Number | LUTs | Supply Voltage | Grade | Package | Leads | Temp. | |------------------------|------|----------------|------------|--------------------|-------|-------| | LCMXO2-2000UHE-4FG484I | 2112 | 1.2 V | -4 | Halogen-Free fpBGA | 484 | IND | | LCMXO2-2000UHE-5FG484I | 2112 | 1.2 V | - 5 | Halogen-Free fpBGA | 484 | IND | | LCMXO2-2000UHE-6FG484I | 2112 | 1.2 V | -6 | Halogen-Free fpBGA | 484 | IND | # MachXO2 Family Data Sheet Supplemental Information April 2012 Data Sheet DS1035 ### For Further Information A variety of technical notes for the MachXO2 family are available on the Lattice web site. - TN1198, Power Estimation and Management for MachXO2 Devices - TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide - TN1201, Memory Usage Guide for MachXO2 Devices - TN1202, MachXO2 sysIO Usage Guide - TN1203, Implementing High-Speed Interfaces with MachXO2 Devices - TN1204, MachXO2 Programming and Configuration Usage Guide - TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices - TN1206, MachXO2 SRAM CRC Error Detection Usage Guide - TN1207, Using TraceID in MachXO2 Devices - TN1074, PCB Layout Recommendations for BGA Packages - TN1087, Minimizing System Interruption During Configuration Using TransFR Technology - AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices - AN8066, Boundary Scan Testability with Lattice sysIO Capability - MachXO2 Device Pinout Files - Thermal Management document - · Lattice design tools For further information on interface standards, refer to the following web sites: - JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org - PCI: www.pcisig.com | Date | Version | Section | Change Summary | |-------------------|-------------------------------------|---|--| | December 2014 2.9 | | Introduction | Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U. | | | DC and Switching
Characteristics | Updated the Recommended Operating Conditions section. Adjusted Max. values for $V_{\rm CC}$ and $V_{\rm CCIO}$. | | | | | Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL. | | | | Pinout Information | Updated the Pinout Information Summary section. Removed MachXO2-4000U. | | | | Ordering Information | Updated the MachXO2 Part Number Description section. Removed BG400 package. | | | | | | Updated the High-Performance Commercial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers. | | | | | Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers. | | November 2014 2.8 | Introduction | Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking. | | | | | Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA. | | | | Pinout Information | Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400. | | | | Ordering Information | Updated the MachXO2 Part Number Description section. Added BG400 package. | | | | | Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers. | | | October 2014 2.7 | Ordering Information | Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE-1UWG49ITR part number package. | | | | Architecture | Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards. | | | | DC and Switching
Characteristics | Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition. | | | | | Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition. | | | | | Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values. | | | July 2014 2.6 | 2.6 | DC and Switching
Characteristics | Updated sysIO Single-Ended DC Electrical Characteristics ^{1,2} section. Updated footnote 4. | | | | | Updated Register-to-Register Performance section. Updated footnote. | | | | Ordering Information | Updated UW49 package to UWG49 in MachXO2 Part Number Description. | | | | | Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging. |