

Welcome to **E-XFL.COM**

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	206
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000hc-5bg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO2™ Family Selection Guide

	XO2-256	XO2-640	XO2-640U ¹	XO2-1200	XO2-1200U ¹	XO2-2000	XO2-2000U1	XO2-4000	XO2-7000
LUTs	256	640	640	1280	1280	2112	2112	4320	6864
Distributed RAM (kbits)	2	5	5	10	10	16	16	34	54
EBR SRAM (kbits)	0	18	64	64	74	74	92	92	240
Number of EBR SRAM Blocks (9 kbits/block)	0	2	7	7	8	8	10	10	26
UFM (kbits)	0	24	64	64	80	80	96	96	256
Device Options: HC ²	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HE ³						Yes	Yes	Yes	Yes
ZE ⁴	Yes	Yes		Yes		Yes		Yes	Yes
Number of PLLs	0	0	1	1	1	1	2	2	2
Hardened I2C	2	2	2	2	2	2	2	2	2
Functions: SPI	1	1	1	1	1	1	1	1	1
Timer/Counter	- 1	1	1	1	1	1	1	1	1
Packages		<u>I</u>	l	1	Ю	<u>I</u>	<u>I</u>	1	
25-ball WLCSP ⁵ (2.5 mm x 2.5 mm, 0.4 mm)				18					
32 QFN ⁶ (5 mm x 5 mm, 0.5 mm)	21			21					
48 QFN ^{8, 9} (7 mm x 7 mm, 0.5 mm)	40	40							
49-ball WLCSP⁵ (3.2 mm x 3.2 mm, 0.4 mm)						38			
64-ball ucBGA (4 mm x 4 mm, 0.4 mm)	44								
84 QFN ⁷ (7 mm x 7 mm, 0.5 mm)								68	
100-pin TQFP (14 mm x 14 mm)	55	78		79		79			
132-ball csBGA (8 mm x 8 mm, 0.5 mm)	55	79		104		104		104	
144-pin TQFP (20 mm x 20 mm)			107	107		111		114	114
184-ball csBGA ⁷ (8 mm x 8 mm, 0.5 mm)								150	
256-ball caBGA (14 mm x 14 mm, 0.8 mm)						206		206	206
256-ball ftBGA (17 mm x 17 mm, 1.0 mm)					206	206		206	206
332-ball caBGA (17 mm x 17 mm, 0.8 mm)								274	278
484-ball ftBGA (23 mm x 23 mm, 1.0 mm)							278	278	334

- 1. Ultra high I/O device.
- 2. High performance with regulator VCC = 2.5 V, 3.3 V
- 3. High performance without regulator V_{CC} = 1.2 V 4. Low power without regulator V_{CC} = 1.2 V
- 5. WLCSP package only available for ZE devices.
- 6. 32 QFN package only available for HC and ZE devices.
- 7. 184 csBGA package only available for HE devices.
- 8. 48-pin QFN information is 'Advanced'.
- 9. 48 QFN package only available for HC devices.

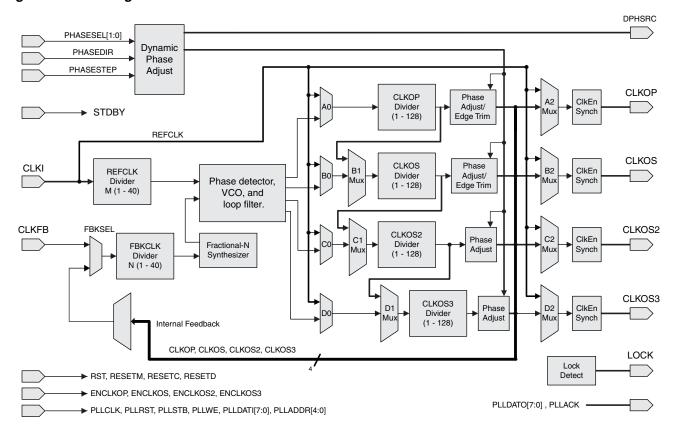
This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{\rm LOCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram



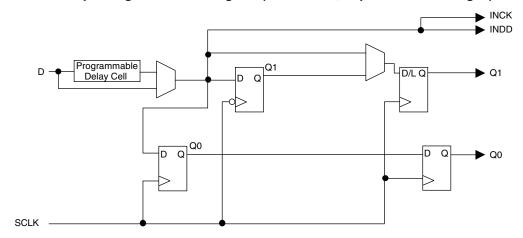
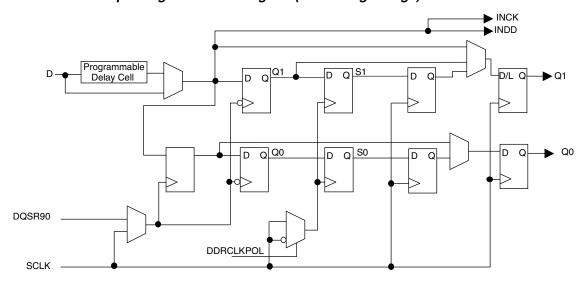

Table 2-4 provides signal descriptions of the PLL block.

Table 2-4. PLL Signal Descriptions

Port Name	I/O	Description
CLKI	I	Input clock to PLL
CLKFB	I	Feedback clock
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports
PHASEDIR	I	Dynamic Phase adjustment direction
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

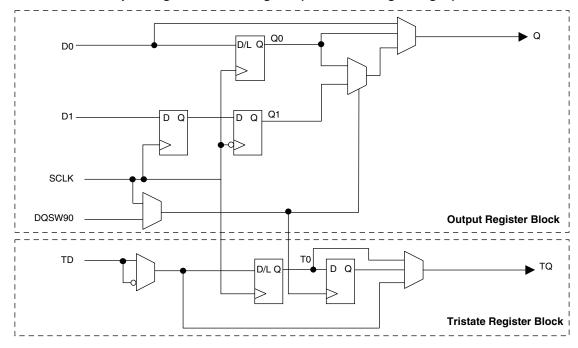


Figure 2-15. MachXO2 Output Register Block Diagram (PIO on the Right Edges)

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the syslO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

The tri-state register blocks on the right edge contain an additional register for DDR memory operation. In DDR memory mode, the register TS input is fed into another register that is clocked using the DQSW90 signal. The output of this register is used as a tri-state control.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

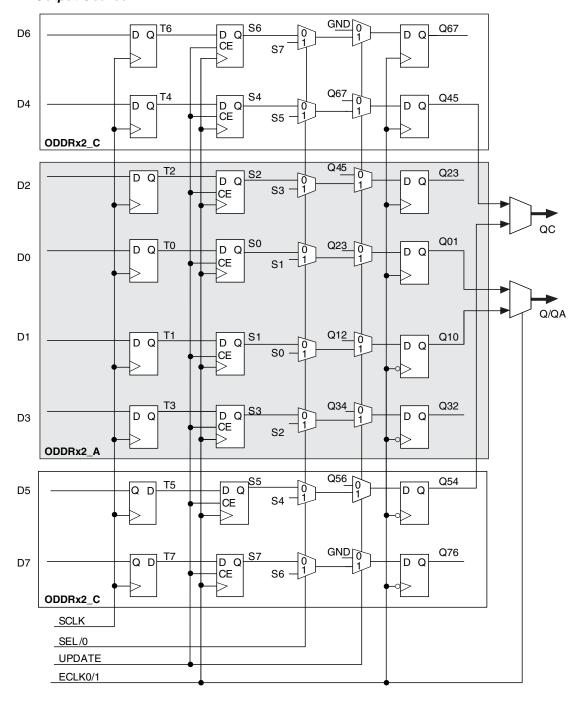
Table 2-9. Input Gearbox Signal List

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

More information on the input gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

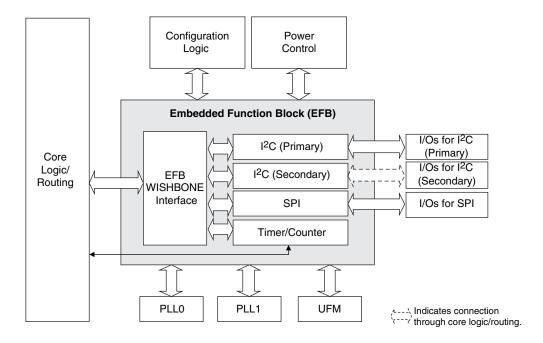
Output Gearbox

Each PIC on the top edge has a built-in 8:1 output gearbox. Each of these output gearboxes may be programmed as a 7:1 serializer or as one ODDRX4 (8:1) gearbox or as two ODDRX2 (4:1) gearboxes. Table 2-10 shows the gearbox signals.


Table 2-10. Output Gearbox Signal List

Name	I/O Type	Description
Q	Output	High-speed data output
D[7:0]	Input	Low-speed data from device core
Video TX(7:1): D[6:0]		
GDDRX4(8:1): D[7:0]		
GDDRX2(4:1)(IOL-A): D[3:0]		
GDDRX2(4:1)(IOL-C): D[7:4]		
SCLK	Input	Slow-speed system clock
ECLK [1:0]	Input	High-speed edge clock
RST	Input	Reset

The gearboxes have three stage pipeline registers. The first stage registers sample the low-speed input data on the low-speed system clock. The second stage registers transfer data from the low-speed clock registers to the high-speed clock registers. The third stage pipeline registers controlled by high-speed edge clock shift and mux the high-speed data out to the sysIO buffer. Figure 2-17 shows the output gearbox block diagram.


Figure 2-17. Output Gearbox

More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I²C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I²C Master. The I²C cores support the following functionality:

- Master and Slave operation
- · 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Figure 2-21. PC Core Block Diagram

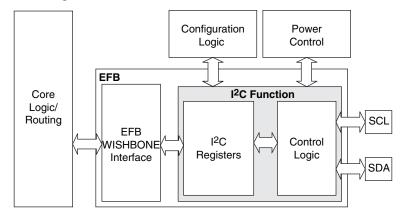


Table 2-15 describes the signals interfacing with the I²C cores.

Table 2-15. PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device.
i2c_sda	Bi-directional	Bi-directional data line of the I ² C core. The signal is an output when data is transmitted from the I ² C core. The signal is an input when data is received into the I ² C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I ² C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I ² C Tab.

Hardened SPI IP Core

Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions:

- · Configurable Master and Slave modes
- · Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- · Double-buffered data register
- · Serial clock with programmable polarity and phase
- · LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

When implementing background programming of the on-chip Flash, care must be taken for the operation of the PLL. For devices that have two PLLs (XO2-2000U, -4000 and -7000), the system must put the RPLL (Right-side PLL) in reset state during the background Flash programming. More detailed description can be found in TN1204, MachXO2 Programming and Configuration Usage Guide.

Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO2 devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile Flash memory spaces. The device can be in one of two modes:

- Unlocked Readback of the SRAM configuration and non-volatile Flash memory spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash and SRAM OTP portions of the device. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Dual Boot

MachXO2 devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the on-chip Flash. The golden image MUST reside in an external SPI Flash. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1206, MachXO2 Soft Error Detection Usage Guide.

TraceID

Each MachXO2 device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO2 family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO2 migration files.

MachXO2 Family Data Sheet DC and Switching Characteristics

March 2017 Data Sheet DS1035

Absolute Maximum Ratings^{1, 2, 3}

	MachXO2 ZE/HE (1.2 V)	MachXO2 HC (2.5 V / 3.3 V)
Supply Voltage V _{CC}	–0.5 V to 1.32 V	–0.5 V to 3.75 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
I/O Tri-state Voltage Applied ^{4, 5}	–0.5 V to 3.75 V	0.5 V to 3.75 V
Dedicated Input Voltage Applied ⁴	–0.5 V to 3.75 V	0.5 V to 3.75 V
Storage Temperature (Ambient)	–55 °C to 125 °C	–55 °C to 125 °C
Junction Temperature (T _J)	–40 °C to 125 °C	–40 °C to 125 °C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage for 1.2 V Devices	1.14	1.26	V
	Core Supply Voltage for 2.5 V / 3.3 V Devices	2.375	3.6	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	1.14	3.6	V
t _{JCOM}	Junction Temperature Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both the same voltage, they must also be the same supply.

Power Supply Ramp Rates¹

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.		1	100	V/ms

^{1.} Assumes monotonic ramp rates.

^{2.} Compliance with the Lattice Thermal Management document is required.

^{3.} All voltages referenced to GND.

^{4.} Overshoot and undershoot of -2 V to $(V_{IHMAX} + 2)$ volts is permitted for a duration of <20 ns.

^{5.} The dual function I^2C pins SCL and SDA are limited to -0.25 V to 3.75 V or to -0.3 V with a duration of <20 ns.

^{2.} See recommended voltages by I/O standard in subsequent table.

^{3.} V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Clamp OFF and V _{CCIO} < V _{IN} < V _{IH} (MAX)	_	_	+175	μΑ
		Clamp OFF and V _{IN} = V _{CCIO}	-10	_	10	μΑ
I _{IL} , I _{IH} 1, 4	Input or I/O Leakage	Clamp OFF and $V_{\rm CCIO}$ –0.97 V < $V_{\rm IN}$ < $V_{\rm CCIO}$	-175	_	_	μΑ
		Clamp OFF and 0 V < V _{IN} < V _{CCIO} -0.97 V	_	_	10	μΑ
		Clamp OFF and V _{IN} = GND	_	_	10	μΑ
		Clamp ON and 0 V < V _{IN} < V _{CCIO}	_		10	μΑ
I _{PU}	I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μΑ
I _{PD}	I/O Active Pull-down Current	V _{IL} (MAX) < V _{IN} < V _{CCIO}	30	_	305	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30	_	_	μΑ
I _{BHHS}	Bus Hold High sustaining current	V _{IN} = 0.7V _{CCIO}	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{CCIO}$		_	305	μΑ
Івнно	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-309	μΑ
V _{BHT} ³	Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5	9	pF
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5.5	7	pF
		V _{CCIO} = 3.3 V, Hysteresis = Large	_	450	_	mV
		V _{CCIO} = 2.5 V, Hysteresis = Large	_	250	_	mV
		V _{CCIO} = 1.8 V, Hysteresis = Large	_	125	_	mV
V	Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large	_	100	_	mV
V _{HYST}	Trigger Inputs⁵	V _{CCIO} = 3.3 V, Hysteresis = Small	_	250	_	mV
		V _{CCIO} = 2.5 V, Hysteresis = Small	_	150	_	mV
		V _{CCIO} = 1.8 V, Hysteresis = Small	_	60	_	mV
		V _{CCIO} = 1.5 V, Hysteresis = Small	_	40	_	mV

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} T_A 25 °C, f = 1.0 MHz.

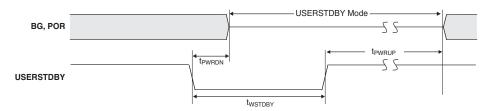
^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

^{4.} When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to-low transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, V_{IH} must be less than or equal to V_{CCIO}.

^{5.} With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.

			_	– 6		-5		-4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}		•	I.	I.	I.				
t _{DVADQ}	Input Data Valid After DQS Input		_	0.369	_	0.395	_	0.421	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.529	_	0.530	_	0.527	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. 13	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	280	_	250	_	208	Mbps
f _{SCLK}	SCLK Frequency		_	140	_	125	_	104	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	280	0	250	0	208	Mbps
DDR ^{9, 12}		•		II.	II.	ı	ı		
t _{DVADQ}	Input Data Valid After DQS Input		_	0.350	_	0.387	_	0.414	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.545	_	0.538	_	0.532	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices, right	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed		_	300	_	250	_	208	Mbps
f _{SCLK}	SCLK Frequency		_	150	_	125	_	104	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps
DDR2 ^{9, 12}			•	•	•			•	•
t _{DVADQ}	Input Data Valid After DQS Input		_	0.360	_	0.378	_	0.406	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.555	_	0.549	_	0.542	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed		_	300	_	250	_	208	Mbps
f _{SCLK}	SCLK Frequency		_	150	_	125	_	104	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps

- 1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.
- 2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.
- 3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).
- 4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.
- 5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).
- 6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} t_{DVA} 0.03 \text{ ns})/2$.
- 7. The t_{SU_DEL} and t_{H_DEL} values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).
- 8. This number for general purpose usage. Duty cycle tolerance is +/- 10%.
- 9. Duty cycle is +/-5% for system usage.
- 10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.
- 11. High-speed DDR and LVDS not supported in SG32 (32 QFN) packages.
- 12. Advance information for MachXO2 devices in 48 QFN packages.
- 13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.


MachXO2 Oscillator Output Frequency

Symbol	Parameter	Min.	Тур.	Max	Units
f _{MAX}	Oscillator Output Frequency (Commercial Grade Devices, 0 to 85°C)	125.685	133	140.315	MHz
	Oscillator Output Frequency (Industrial Grade Devices, –40 °C to 100 °C)	124.355	133	141.645	MHz
t _{DT}	Output Clock Duty Cycle	43	50	57	%
t _{OPJIT} 1	Output Clock Period Jitter	0.01	0.012	0.02	UIPP
t _{STABLEOSC}	STDBY Low to Oscillator Stable	0.01	0.05	0.1	μs

^{1.} Output Clock Period Jitter specified at 133 MHz. The values for lower frequencies will be smaller UIPP. The typical value for 133 MHz is 95 ps and for 2.08 MHz the typical value is 1.54 ns.

MachXO2 Standby Mode Timing – HC/HE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	_	9	ns
		LCMXO2-256		_		μs
		LCMXO2-640		_		μs
		LCMXO2-640U		_		μs
		LCMXO2-1200	20	_	50	μs
t _{PWRUP}	USERSTDBY Low to Power Up	LCMXO2-1200U		_		μs
		LCMXO2-2000		_		μs
		LCMXO2-2000U		_		μs
		LCMXO2-4000		_		μs
		LCMXO2-7000		_		μs
twstdby	USERSTDBY Pulse Width	All	18	_	_	ns

MachXO2 Standby Mode Timing – ZE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	_	13	ns
		LCMXO2-256		_		μs
	USERSTDBY Low to Power Up	LCMXO2-640		_		μs
		LCMXO2-1200	20	_	50	μs
t _{PWRUP}		LCMXO2-2000		_		μs
		LCMXO2-4000		_		μs
		LCMXO2-7000		_		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	19	_	_	ns
t _{BNDGAPSTBL}	USERSTDBY High to Bandgap Stable	All		_	15	ns

I²C Port Timing Specifications^{1, 2}

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCL clock frequency	_	400	kHz

- 1. MachXO2 supports the following modes:
 - Standard-mode (Sm), with a bit rate up to 100 kbit/s (user and configuration mode)
 - Fast-mode (Fm), with a bit rate up to 400 kbit/s (user and configuration mode)
- 2. Refer to the I²C specification for timing requirements.

SPI Port Timing Specifications¹

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCK clock frequency		45	MHz

Applies to user mode only. For configuration mode timing specifications, refer to sysCONFIG Port Timing Specifications table in this data sheet.

Switching Test Conditions

Figure 3-13 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

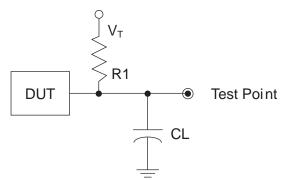


Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R1	CL	Timing Ref.	VT
			LVTTL, LVCMOS 3.3 = 1.5 V	_
LVTTL and LVCMOS settings (L -> H, H -> L)			LVCMOS 2.5 = V _{CCIO} /2	_
	∞	0pF	LVCMOS 1.8 = V _{CCIO} /2	_
			LVCMOS 1.5 = V _{CCIO} /2	_
			LVCMOS 1.2 = V _{CCIO} /2	_
LVTTL and LVCMOS 3.3 (Z -> H)			1.5 V	V _{OL}
LVTTL and LVCMOS 3.3 (Z -> L)	1		1.5 V	V _{OH}
Other LVCMOS (Z -> H)	188	0pF	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	Орг	V _{CCIO} /2	V _{OH}
LVTTL + LVCMOS (H -> Z)	1		V _{OH} – 0.15 V	V _{OL}
LVTTL + LVCMOS (L -> Z)	1		V _{OL} – 0.15 V	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pinout Information Summary

		Ma	achXO2-2	256		Ма	chXO2-6	640	MachXO2-640U
	32 QFN ¹	48 QFN ³	64 ucBGA	100 TQFP	132 csBGA	48 QFN ³	100 TQFP	132 csBGA	144 TQFP
General Purpose I/O per Bank	· II	I.						•	•
Bank 0	8	10	9	13	13	10	18	19	27
Bank 1	2	10	12	14	14	10	20	20	26
Bank 2	9	10	11	14	14	10	20	20	28
Bank 3	2	10	12	14	14	10	20	20	26
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Single Ended I/O	21	40	44	55	55	40	78	79	107
Differential I/O per Bank									
Bank 0	4	5	5	7	7	5	9	10	14
Bank 1	1	5	6	7	7	5	10	10	13
Bank 2	4	5	5	7	7	5	10	10	14
Bank 3	1	5	6	7	7	5	10	10	13
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Differential I/O	10	20	22	28	28	20	39	40	54
Dual Function I/O	22	25	27	29	29	25	29	29	33
High-speed Differential I/O			<u> </u>		<u> </u>				
Bank 0	0	0	0	0	0	0	0	0	7
Gearboxes	1	<u> </u>	l		l				
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	0	0	0	0	0	0	0	0	7
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	0	0	0	0	0	0	0	0	7
DQS Groups	I	I	1		1			1	I
Bank 1	0	0	0	0	0	0	0	0	2
VCCIO Pins									
Bank 0	2	2	2	2	2	2	2	2	3
Bank 1	1	1	2	2	2	1	2	2	3
Bank 2	2	2	2	2	2	2	2	2	3
Bank 3	1	1	2	2	2	1	2	2	3
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
	•	T	_	Ī	_	Ī		1	T
VCC	2	2	2	2	2	2	2	2	4
GND ²	2	1	8	8	8	1	8	10	12
NC	0	0	1	26	58	0	3	32	8
Reserved for Configuration	1	1	1	1	1	1	1	1	1
Total Count of Bonded Pins	32	49	64	100	132	49	100	132	144

Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.
 For 48 QFN package, exposed die pad is the device ground.
 48-pin QFN information is 'Advanced'.

High-Performance Commercial Grade Devices without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100C	2112	1.2 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-5TG100C	2112	1.2 V	- 5	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-6TG100C	2112	1.2 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-4TG144C	2112	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-5TG144C	2112	1.2 V	- 5	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-6TG144C	2112	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-4MG132C	2112	1.2 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-5MG132C	2112	1.2 V	- 5	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-6MG132C	2112	1.2 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-4BG256C	2112	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-5BG256C	2112	1.2 V	- 5	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-6BG256C	2112	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-4FTG256C	2112	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-2000HE-5FTG256C	2112	1.2 V	- 5	Halogen-Free ftBGA	256	COM
LCMXO2-2000HE-6FTG256C	2112	1.2 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484C	2112	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHE-5FG484C	2112	1.2 V	- 5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHE-6FG484C	2112	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-4TG144C	4320	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-5TG144C	4320	1.2 V	- 5	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-6TG144C	4320	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-4MG132C	4320	1.2 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-5MG132C	4320	1.2 V	- 5	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-6MG132C	4320	1.2 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-4BG256C	4320	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-4MG184C	4320	1.2 V	-4	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-5MG184C	4320	1.2 V	- 5	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-6MG184C	4320	1.2 V	-6	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-5BG256C	4320	1.2 V	- 5	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-6BG256C	4320	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-4FTG256C	4320	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-5FTG256C	4320	1.2 V	- 5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-6FTG256C	4320	1.2 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-4BG332C	4320	1.2 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HE-5BG332C	4320	1.2 V	- 5	Halogen-Free caBGA	332	COM

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256ZE-1SG32I	256	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-256ZE-2SG32I	256	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-256ZE-3SG32I	256	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-256ZE-1UMG64I	256	1.2 V	-1	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-2UMG64I	256	1.2 V	-2	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-3UMG64I	256	1.2 V	-3	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-1TG100I	256	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-2TG100I	256	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-3TG100I	256	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-1MG132I	256	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-2MG132I	256	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-3MG132I	256	1.2 V	-3	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640ZE-1TG100I	640	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-2TG100I	640	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-3TG100I	640	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-1MG132I	640	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-640ZE-2MG132I	640	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-640ZE-3MG132I	640	1.2 V	-3	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1UWG25ITR ¹	1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR50 ³	1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR1K ²	1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1SG32I	1280	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-2SG32I	1280	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-3SG32I	1280	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-1TG100I	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100I	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100I	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132I	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132I	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132I	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144I	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144I	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144I	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

^{1.} This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

^{2.} This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

^{3.} This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4SG32I	1280	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-1200HC-5SG32I	1280	2.5 V / 3.3 V	- 5	Halogen-Free QFN	32	IND
LCMXO2-1200HC-6SG32I	1280	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-1200HC-4TG100I	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100I	1280	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100I	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132I	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132I	1280	2.5 V / 3.3 V	- 5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132I	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144I	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144I	1280	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144I	1280	2.5 V/ 3.3 V	-6	Halogen-Free TQFP	144	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200UHC-4FTG256I	1280	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-1200UHC-5FTG256I	1280	2.5 V / 3.3 V	- 5	Halogen-Free ftBGA	256	IND
LCMXO2-1200UHC-6FTG256I	1280	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HC-4TG100I	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-5TG100I	2112	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-6TG100I	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-4MG132I	2112	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-5MG132I	2112	2.5 V / 3.3 V	- 5	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-6MG132I	2112	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-4TG144I	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-5TG144I	2112	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-6TG144I	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-4BG256I	2112	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-5BG256I	2112	2.5 V / 3.3 V	- 5	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-6BG256I	2112	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-4FTG256I	2112	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HC-5FTG256I	2112	2.5 V / 3.3 V	- 5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HC-6FTG256I	2112	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484I	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHC-5FG484I	2112	2.5 V / 3.3 V	- 5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHC-6FG484I	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

Date	Version	Section	Change Summary
December 2014 2.9		Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
	DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for $V_{\rm CC}$ and $V_{\rm CCIO}$.	
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014 2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.	
		Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.	
	Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.	
	Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.	
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	October 2014 2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE-1UWG49ITR part number package.
	Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.	
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1,2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated footnote.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.