

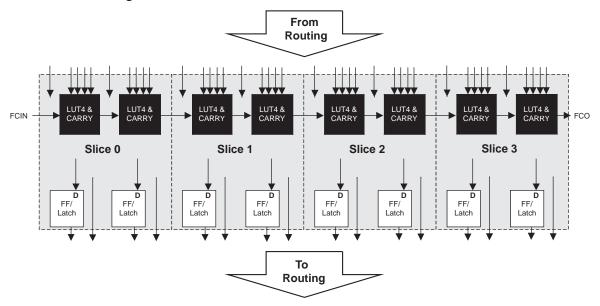
Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	104
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000hc-5mg132c

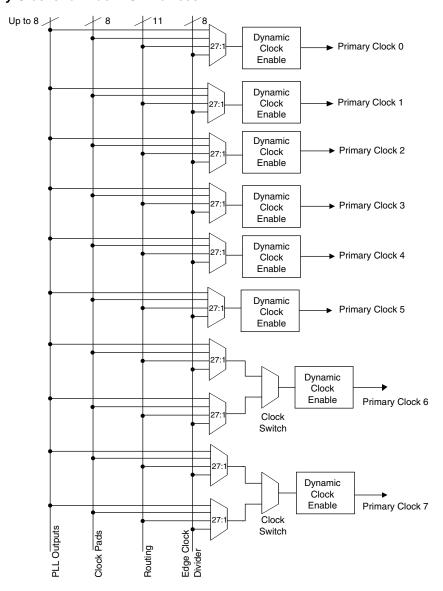
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. PFU Block Diagram

Slices

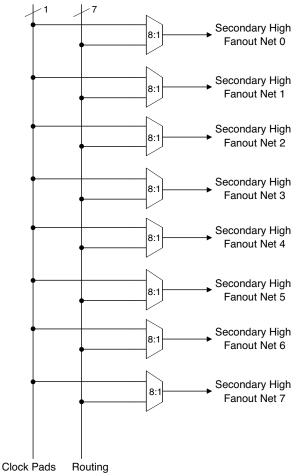
Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chipselect and wider RAM/ROM functions.


Table 2-1. Resources and Modes Available per Slice

	PFU Block		
Slice	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	
Slice 2	2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM		
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

Figure 2-5. Primary Clocks for MachXO2 Devices


Primary clocks for MachXO2-640U, MachXO2-1200/U and larger devices.

Note: MachXO2-640 and smaller devices do not have inputs from the Edge Clock Divider or PLL and fewer routing inputs. These devices have 17:1 muxes instead of 27:1 muxes.

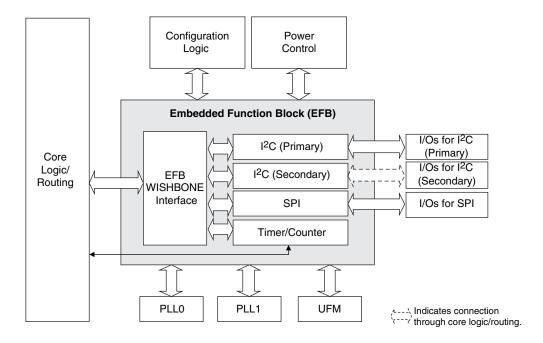
Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO2 External Switching Characteristics table.

Figure 2-6. Secondary High Fanout Nets for MachXO2 Devices

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The MachXO2-640U, MachXO2-1200/U and larger devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO2 sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.


Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO2 clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I²C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I²C Master. The I²C cores support the following functionality:

- Master and Slave operation
- · 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Hardened Timer/Counter

MachXO2 devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- · Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- · Programmable clock input source
- Programmable input clock prescaler
- · One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- · Three independent interrupt sources: overflow, output compare match, and input capture
- · Auto reload
- · Time-stamping support on the input capture unit
- · Waveform generation on the output
- · Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- Stand-alone mode with preloaded control registers and direct reset input

Figure 2-23. Timer/Counter Block Diagram

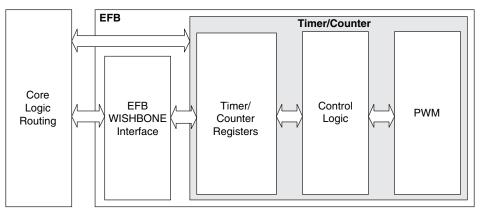


Table 2-17. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

For more details on these embedded functions, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

User Flash Memory (UFM)

MachXO2-640/U and higher density devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I²C and SPI interfaces of the device. The UFM block offers the following features:

- · Non-volatile storage up to 256 kbits
- · 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- · Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

Standby Mode and Power Saving Options

MachXO2 devices are available in three options for maximum flexibility: ZE, HC and HE devices. The ZE devices have ultra low static and dynamic power consumption. These devices use a 1.2 V core voltage that further reduces power consumption. The HC and HE devices are designed to provide high performance. The HC devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the HE devices operate at 1.2 V V_{CC} .

MachXO2 devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO2 devices support an ultra low power Stand-by mode. While most of these features are available in all three device types, these features are mainly intended for use with MachXO2 ZE devices to manage power consumption.

In the stand-by mode the MachXO2 devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO2 devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

Table 2-18. MachXO2 Power Saving Features Description

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, analog circuitry such as the POR, PLLs, on-chip oscillator, and referenced and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Referenced and differential I/O buffers (used to implement standards such as HSTL, SSTL and LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Power On Reset

MachXO2 devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO} (controls configuration) voltage levels. It then triggers download from the on-chip configuration Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For devices without voltage regulators (ZE and HE devices), V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators (HC devices), V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as Flash Download Time ($t_{REFRESH}$) in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tristate. I/Os are released to user functionality once the device has finished configuration. Note that for HC devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNBRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNBRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once a ZE or HE device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a minimal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

Static Supply Current – ZE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256ZE	18	μΑ
las		LCMXO2-640ZE	28	μΑ
	Core Power Supply	LCMXO2-1200ZE	56	μΑ
Icc	Core Fower Supply	LCMXO2-2000ZE	80	μΑ
		LCMXO2-4000ZE	124	μΑ
		LCMXO2-7000ZE	189	μΑ
I _{CCIO}	Bank Power Supply ⁵ V _{CCIO} = 2.5 V	All devices	1	μΑ

- 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.
- Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool.
- 3. Frequency = 0 MHz.
- 4. $T_J = 25$ °C, power supplies at nominal voltage.
- 5. Does not include pull-up/pull-down.
- 6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Static Power Consumption Contribution of Different Components – ZE Devices

The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool.

Symbol	Parameter	Тур.	Units
I _{DCBG}	Bandgap DC power contribution	101	μΑ
I _{DCPOR}	POR DC power contribution	38	μΑ
IDCIOBANKCONTROLLER	DC power contribution per I/O bank controller	143	μΑ

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
	Cara Davier Comple	LCMXO2-2000HC	4.80	mA
Icc	Core Power Supply	LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Iccio	Bank Power Supply ⁵ V _{CCIO} = 2.5 V	All devices	0	mA

- 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.
- 2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.
- 3. Frequency = 0 MHz.
- 4. $T_J = 25$ °C, power supplies at nominal voltage.
- 5. Does not include pull-up/pull-down.
- 6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

- 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.
- 2. Assumes all inputs are held at $\ensuremath{V_{\text{CCIO}}}$ or GND and all outputs are tri-stated.
- 3. Typical user pattern.
- 4. JTAG programming is at 25 MHz.
- 5. $T_J = 25$ °C, power supplies at nominal voltage.
- 6. Per bank. $V_{CCIO} = 2.5 \text{ V}$. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
1	Core Power Supply	LCMXO2-1200ZE	15	mA
ICC	Cole Fower Supply	LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

- 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.
- 2. Assumes all inputs are held at $\ensuremath{V_{\text{CCIO}}}$ or GND and all outputs are tri-stated.
- 3. Typical user pattern.
- 4. JTAG programming is at 25 MHz.
- 5. TJ = 25 °C, power supplies at nominal voltage.
- 6. Per bank. $V_{CCIO} = 2.5 \text{ V}$. Does not include pull-up/pull-down.

LVPECL

The MachXO2 family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Differential LVPECL is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions1

Over Recommended Operating Conditions

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	93	Ohms
R _P	Driver parallel resistor	196	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.05	V
V _{OL}	Output low voltage	1.25	V
V _{OD}	Output differential voltage	0.80	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	12.11	mA

^{1.} For input buffer, see LVDS table.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

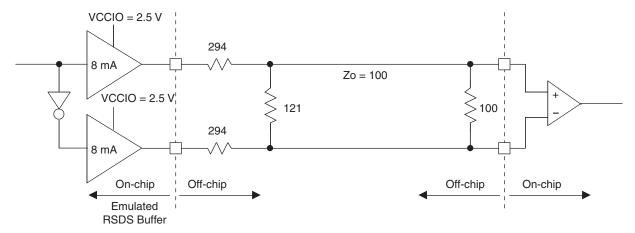


Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

Typical Building Block Function Performance – HC/HE Devices¹ Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions	·	
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

^{1.} The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

			-3 -2			-2			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200ZE	0.66	_	0.68	_	0.80	_	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	0.68	_	0.70	_	0.83	_	ns
t _{HPLL}	Register	MachXO2-4000ZE	0.68	_	0.71	_	0.84	_	ns
		MachXO2-7000ZE	0.73	_	0.74	_	0.87	_	ns
		MachXO2-1200ZE	5.14	_	5.69	_	6.20	_	ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	5.11	_	5.67	_	6.17	_	ns
t _{SU_DELPLL}	Input Register with Data Input Delay	MachXO2-4000ZE	5.27	_	5.84	_	6.35	_	ns
		MachXO2-7000ZE	5.15	_	5.71	_	6.23	_	ns
		MachXO2-1200ZE	-1.36	_	-1.36	_	-1.36	_	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-1.35	_	-1.35	_	-1.35	_	ns
^t H_DELPLL	Register with Input Data Delay	MachXO2-4000ZE	-1.43	_	-1.43		-1.43	_	ns
		MachXO2-7000ZE	-1.41	_	-1.41	_	-1.41	_	ns
Generic DDF	RX1 Inputs with Clock and Data A	ligned at Pin Using Po	CLK Pin	for Cloc	k Input -	GDDR	K1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		_	0.382		0.401	_	0.417	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2	0.670		0.684		0.693		UI
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		140		116	_	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70	_	58	_	49	MHz
	RX1 Inputs with Clock and Data Ce	entered at Pin Using Po	CLK Pin 1	or Clock	Input –	GDDRX	1_RX.SC	CLK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		1.319	_	1.412	_	1.462	_	ns
t _{HO}	Input Data Hold After CLK	All MachXO2	0.717	_	1.010	_	1.340	_	ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	_	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70	_	58	_	49	MHz
	RX2 Inputs with Clock and Data A	ligned at Pin Using Po	CLK Pin	for Cloc	k Input -	GDDR	(2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		_	0.361	_	0.346	_	0.334	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.602	_	0.625		0.648		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only11	_	140	_	117	_	97	MHz
f _{SCLK}	SCLK Frequency		_	70	_	59	_	49	MHz
	RX2 Inputs with Clock and Data Ce	entered at Pin Using Po	LK Pin f	or Clock	Input –	GDDRX		LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.472	_	0.672	_	0.865	_	ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.363	_	0.501	_	0.743	_	ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only11	_	140		117	_	97	MHz
f _{SCLK}	SCLK Frequency		_	70	_	59	_	49	MHz
	R4 Inputs with Clock and Data Al	ligned at Pin Using Po	LK Pin	for Cloc	k Input -	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		l —	0.307	_	0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640LL	0.662	_	0.650	_	0.649	_	UI
	DDRX4 Serial Input Data	MachXO2-640U, MachXO2-1200/U		420		352	_	292	Mbps
f _{DATA}	Speed	and larger devices,	_	720		00_		232	
f _{DATA}		and larger devices, bottom side only ¹¹		210	_	176	_	146	MHz

			_	3	_	2	_	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR4	Inputs with Clock and Data Cer	ntered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	_RX.EC	LK.Cent	ered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.434	_	0.535	_	0.630	_	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.385	_	0.395	—	0.463	_	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	_	210		176		146	MHz
f _{SCLK}	SCLK Frequency			53	_	44	_	37	MHz
7:1 LVDS Inp	uts - GDDR71_RX.ECLK.7.1 ^{9, 12}	2							
t _{DVA}	Input Data Valid After ECLK			0.307	_	0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK		0.662	_	0.650	_	0.649	_	UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U	_	420	_	352	_	292	Mbps
f _{DDR71}	DDR71 ECLK Frequency	and larger devices,	_	210	_	176	_	146	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)	bottom side only ¹¹	_	60	_	50	_	42	MHz
Generic DDR	Outputs with Clock and Data A	ligned at Pin Using PC	LK Pin 1	or Clock	Input -	GDDRX	1_TX.S	CLK.Ali	ned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.850	_	0.910	_	0.970	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides	_	0.850	_	0.910	_	0.970	ns
f _{DATA}	DDRX1 Output Data Speed		_	140	_	116		98	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			70	_	58		49	MHz
Generic DDR	Outputs with Clock and Data Ce	ntered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		2.720	_	3.380	_	4.140	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2	2.720	_	3.380	_	4.140	_	ns
f _{DATA}	DDRX1 Output Data Speed	devices, all sides	_	140	_	116	_	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	70	_	58	_	49	MHz
Generic DDRX	K2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.270	_	0.300	_	0.330	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U	_	0.270	_	0.300	-	0.330	ns
f _{DATA}	DDRX2 Serial Output Data Speed	and larger devices, top side only	_	280	_	234	-	194	Mbps
f _{DDRX2}	DDRX2 ECLK frequency		_	140	_	117	_	97	MHz
f _{SCLK}	SCLK Frequency		_	70	_	59		49	MHz

sysCLOCK PLL Timing (Continued)

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
t _{ROTATE_WD}	PHASESTEP Pulse Width		4	_	VCO Cycles

- 1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.
- 2. Output clock is valid after t_{I OCK} for PLL reset and dynamic delay adjustment.
- 3. Using LVDS output buffers.
- 4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details.
- 5. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.
- 6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.
- 7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.
- 8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications

Symbol	Pa	Parameter		Max.	Units
All Configuration Mod	des		_L	I.	l
t _{PRGM}	PROGRAMN low p	oulse accept	55	_	ns
t _{PRGMJ}	PROGRAMN low p	oulse rejection	_	25	ns
t _{INITL}	INITN low time	LCMXO2-256	_	30	μs
		LCMXO2-640	_	35	μs
		LCMXO2-640U/ LCMXO2-1200	_	55	μs
		LCMXO2-1200U/ LCMXO2-2000	_	70	μs
		LCMXO2-2000U/ LCMXO2-4000	_	105	μs
		LCMXO2-7000	_	130	μs
t _{DPPINIT}	PROGRAMN low to	o INITN low	_	150	ns
t _{DPPDONE}	PROGRAMN low to	o DONE low	_	150	ns
t _{IODISS}	PROGRAMN low to	o I/O disable	_	120	ns
Slave SPI	•		•		
f _{MAX}	CCLK clock freque	ncy	_	66	MHz
t _{CCLKH}	CCLK clock pulse	width high	7.5	_	ns
t _{CCLKL}	CCLK clock pulse	width low	7.5	_	ns
t _{STSU}	CCLK setup time		2	_	ns
t _{STH}	CCLK hold time		0	_	ns
t _{STCO}	CCLK falling edge	to valid output	_	10	ns
t _{STOZ}	CCLK falling edge	to valid disable	_	10	ns
t _{STOV}	CCLK falling edge	to valid enable	_	10	ns
t _{SCS}	Chip select high tin	ne	25	_	ns
t _{SCSS}	Chip select setup ti	ime	3	_	ns
t _{SCSH}	Chip select hold tin	ne	3	_	ns
Master SPI	•		•		
f _{MAX}	MCLK clock freque	ency	_	133	MHz
t _{MCLKH}	MCLK clock pulse	MCLK clock pulse width high		_	ns
t _{MCLKL}	MCLK clock pulse	width low	3.75	_	ns
t _{STSU}	MCLK setup time		5	_	ns
t _{STH}	MCLK hold time		1	_	ns
t _{CSSPI}	INITN high to chip	select low	100	200	ns
t _{MCLK}	INITN high to first I	MCLK edge	0.75	1	μs

		MachXO2-1200U				
	100 TQFP	132 csBGA	144 TQFP	25 WLCSP	32 QFN ¹	256 ftBGA
General Purpose I/O per Bank	1	l				L
Bank 0	18	25	27	11	9	50
Bank 1	21	26	26	0	2	52
Bank 2	20	28	28	7	9	52
Bank 3	20	25	26	0	2	16
Bank 4	0	0	0	0	0	16
Bank 5	0	0	0	0	0	20
Total General Purpose Single Ended I/O	79	104	107	18	22	206
Differential I/O per Bank						
Bank 0	9	13	14	5	4	25
Bank 1	10	13	13	0	1	26
Bank 2	10	14	14	2	4	26
Bank 3	10	12	13	0	1	8
Bank 4	0	0	0	0	0	8
Bank 5	0	0	0	0	0	10
Total General Purpose Differential I/O	39	52	54	7	10	103
Dual Function I/O	31	33	33	18	22	33
High-speed Differential I/O						
Bank 0	4	7	7	0	0	14
Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	4	7	7	0	0	14
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	5	7	7	0	2	14
DQS Groups						
Bank 1	1	2	2	0	0	2
VCCIO Pins						
Bank 0	2	3	3	1	2	4
Bank 1	2	3	3	0	1	4
Bank 2	2	3	3	1	2	4
Bank 3	3	3	3	0	1	1
Bank 4	0	0	0	0	0	2
Bank 5	0	0	0	0	0	1
VCC	2	4	4	2	2	8
GND	8	10	12	2	2	24
NC	1	1	8	0	0	1
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	100	132	144	25	32	256
1 Lattice recommends coldering the centre						<u> </u>

^{1.} Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4SG32C	1280	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	COM
LCMXO2-1200HC-5SG32C	1280	2.5 V / 3.3 V	- 5	Halogen-Free QFN	32	COM
LCMXO2-1200HC-6SG32C	1280	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	COM
LCMXO2-1200HC-4TG100C	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	СОМ
LCMXO2-1200HC-5TG100C	1280	2.5 V / 3.3 V	– 5	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-6TG100C	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-4MG132C	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-5MG132C	1280	2.5 V / 3.3 V	- 5	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-6MG132C	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-4TG144C	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	СОМ
LCMXO2-1200HC-5TG144C	1280	2.5 V / 3.3 V	– 5	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-6TG144C	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200UHC-4FTG256C	1280	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-1200UHC-5FTG256C	1280	2.5 V / 3.3 V	- 5	Halogen-Free ftBGA	256	COM
LCMXO2-1200UHC-6FTG256C	1280	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HC-4TG100C	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-5TG100C	2112	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-6TG100C	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-4MG132C	2112	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-5MG132C	2112	2.5 V / 3.3 V	- 5	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-6MG132C	2112	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-4TG144C	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-5TG144C	2112	2.5 V / 3.3 V	- 5	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-6TG144C	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-4BG256C	2112	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-5BG256C	2112	2.5 V / 3.3 V	- 5	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-6BG256C	2112	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-4FTG256C	2112	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-2000HC-5FTG256C	2112	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-2000HC-6FTG256C	2112	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR1 ¹	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR1 ¹	1280	1.2 V	–1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR1 ¹	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR1 ¹	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR1 ¹	1280	1.2 V	–1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

^{1.} Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.