E. Kattice Semiconductor Corporation - <u>LCMXO2-2000HC-6MG132C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	104
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000hc-6mg132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO2™ Family Selection Guide

LUTs			XO2-640	XO2-640U ¹	702-1200	702-12000	702-2000	702-20000	XU2-4000	XO2-7000
2010		256	640	640	1280	1280	2112	2112	4320	6864
Distributed RAM (kbi	ts)	2	5	5	10	10	16	16	34	54
EBR SRAM (kbits)		0 18 64 64 74 74 92 92		92	240					
Number of EBR SRA kbits/block)	M Blocks (9	0	2	7	7	8	8	10	10	26
UFM (kbits)		0	24	64	64	80	80	96	96	256
Device Options:	HC ²	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	HE ³						Yes	Yes	Yes	Yes
	ZE ⁴	Yes	Yes		Yes		Yes		Yes	Yes
Number of PLLs		0	0	1	1	1	1	2	2	2
Hardened	12C	2	2	2	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1	1	1	1
	Timer/Coun- ter	1	1	1	1	1	1	1	1	1
Packages						ю				
25-ball WLCSP⁵ (2.5 mm x 2.5 mm, 0	.4 mm)				18					
32 QFN ⁶ (5 mm x 5 mm, 0.5 m	nm)	21			21					
48 QFN ^{8, 9} (7 mm x 7 mm, 0.5 n	וm)	40	40							
49-ball WLCSP⁵ (3.2 mm x 3.2 mm, 0	.4 mm)						38			
64-ball ucBGA (4 mm x 4 mm, 0.4 m	וm)	44								
84 QFN ⁷ (7 mm x 7 mm, 0.5 m	וm)								68	
100-pin TQFP (14 mm x 14 mm)		55	78		79		79			
132-ball csBGA (8 mm x 8 mm, 0.5 m	וm)	55	79		104		104		104	
144-pin TQFP (20 mm x 20 mm)				107	107		111		114	114
184-ball csBGA ⁷ (8 mm x 8 mm, 0.5 m	וm)								150	
256-ball caBGA (14 mm x 14 mm, 0.8	3 mm)						206		206	206
256-ball ftBGA (17 mm x 17 mm, 1.0) mm)					206	206		206	206
332-ball caBGA (17 mm x 17 mm, 0.8	3 mm)								274	278
484-ball ftBGA (23 mm x 23 mm, 1.0) mm)							278	278	334

1. Ultra high I/O device.

2. High performance with regulator – VCC = 2.5 V, 3.3 V

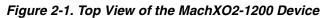
3. High performance without regulator $-V_{CC} = 1.2 V$ 4. Low power without regulator $-V_{CC} = 1.2 V$ 5. WLCSP package only available for ZE devices.

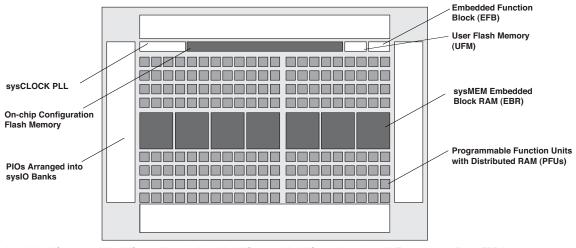
6. 32 QFN package only available for HC and ZE devices.

7. 184 csBGA package only available for HE devices.

8. 48-pin QFN information is 'Advanced'.

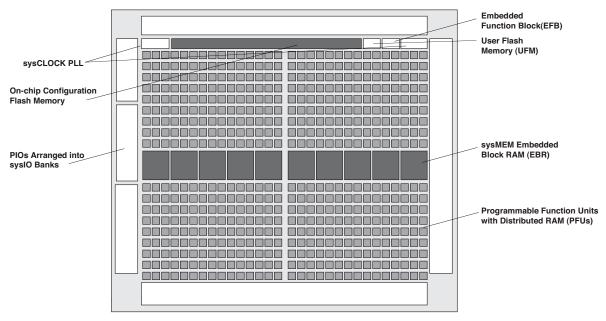
9. 48 QFN package only available for HC devices.


MachXO2 Family Data Sheet Architecture


March 2016

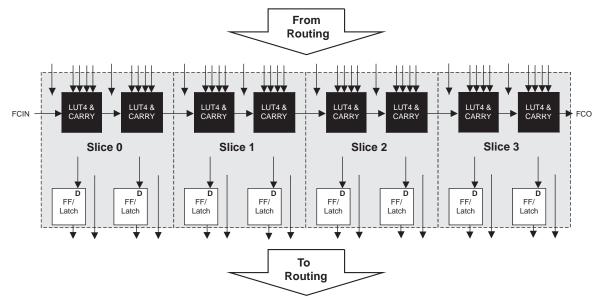
Data Sheet DS1035

Architecture Overview


The MachXO2 family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). The larger logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Note: MachXO2-256, and MachXO2-640/U are similar to MachXO2-1200. MachXO2-256 has a lower LUT count and no PLL or EBR blocks. MachXO2-640 has no PLL, a lower LUT count and two EBR blocks. MachXO2-640U has a lower LUT count, one PLL and seven EBR blocks.

Figure 2-2. Top View of the MachXO2-4000 Device



Note: MachXO2-1200U, MachXO2-2000/U and MachXO2-7000 are similar to MachXO2-4000. MachXO2-1200U and MachXO2-2000 have a lower LUT count, one PLL, and eight EBR blocks. MachXO2-2000U has a lower LUT count, two PLLs, and 10 EBR blocks. MachXO2-7000 has a higher LUT count, two PLLs, and 26 EBR blocks.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-3. PFU Block Diagram

Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

	PFU Block						
Slice	Resources	Modes					
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM					
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM					
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM					
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM					

Table 2-1. Resources and Modes Available per Slice

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Routing

There are many resources provided in the MachXO2 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each MachXO2 device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO2 architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO2-640U, MachXO2-1200/U and higher density devices have two edge clocks each on the top and bottom edges. Lower density devices have no edge clocks. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.

The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO2 devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

The maximum frequency for the primary clock network is shown in the MachXO2 External Switching Characteristics table.

The primary clock signals for the MachXO2-256 and MachXO2-640 are generated from eight 17:1 muxes The available clock sources include eight I/O sources and 9 routing inputs. Primary clock signals for the MachXO2-640U, MachXO2-1200/U and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sysCLOCK PLL outputs.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

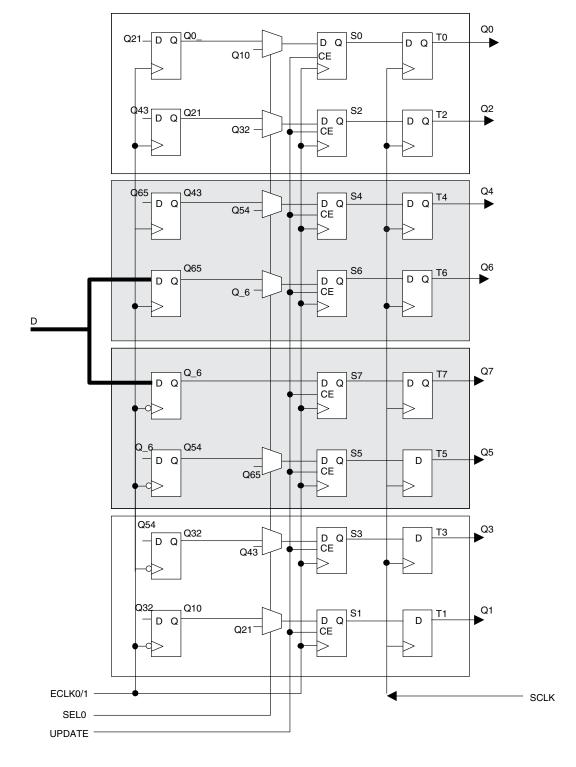
The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.


On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

For more details on these embedded functions, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

User Flash Memory (UFM)

MachXO2-640/U and higher density devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I²C and SPI interfaces of the device. The UFM block offers the following features:

- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

Standby Mode and Power Saving Options

MachXO2 devices are available in three options for maximum flexibility: ZE, HC and HE devices. The ZE devices have ultra low static and dynamic power consumption. These devices use a 1.2 V core voltage that further reduces power consumption. The HC and HE devices are designed to provide high performance. The HC devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the HE devices operate at 1.2 V V_{CC}.

MachXO2 devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO2 devices support an ultra low power Stand-by mode. While most of these features are available in all three device types, these features are mainly intended for use with MachXO2 ZE devices to manage power consumption.

In the stand-by mode the MachXO2 devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO2 devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)		V _{REF} (V)					
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.			
LVCMOS 3.3	3.135	3.3	3.6	—	—	—			
LVCMOS 2.5	2.375	2.5	2.625	—	—	—			
LVCMOS 1.8	1.71	1.8	1.89	—	—	—			
LVCMOS 1.5	1.425	1.5	1.575	—	—	—			
LVCMOS 1.2	1.14	1.2	1.26	—	—	_			
LVTTL	3.135	3.3	3.6	—	—	—			
PCI ³	3.135	3.3	3.6	—	—	—			
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35			
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969			
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08			
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4			
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05			
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05			
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9			
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9			
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75			
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75			
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65			
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65			
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_			
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—			
LVPECL ¹	3.135	3.3	3.6	—	—	—			
BLVDS ¹	2.375	2.5	2.625	—	—	—			
RSDS ¹	2.375	2.5	2.625	—	—	—			
SSTL18D	1.71	1.8	1.89	—	—	—			
SSTL25D	2.375	2.5	2.625	—	—				
HSTL18D	1.71	1.8	1.89	—	—	—			

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.

3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units
Basic Functions		
16-bit decoder	13.9	ns
4:1 MUX	10.9	ns
16:1 MUX	12.0	ns

Register-to-Register Performance

–3 Timing	Units
191	MHz
134	MHz
148	MHz
77	MHz
90	MHz
214	MHz
	191 134 148 77 90

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

			-	-6 -5			-		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256HC-HE	1.42	—	1.59	—	1.96	—	ns
		MachXO2-640HC-HE	1.41	—	1.58	—	1.96	—	ns
•	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-1200HC-HE	1.63		1.79		2.17		ns
^t SU_DEL	Delay	MachXO2-2000HC-HE	1.61		1.76		2.13		ns
		MachXO2-4000HC-HE	1.66	—	1.81	—	2.19	—	ns
		MachXO2-7000HC-HE	1.53	—	1.67	—	2.03	—	ns
		MachXO2-256HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
		MachXO2-640HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
•	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
		MachXO2-4000HC-HE	-0.25	—	-0.25	—	-0.25	—	ns
		MachXO2-7000HC-HE	-0.21	_	-0.21		-0.21	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	388	_	323	_	269	MHz
General I/O	Pin Parameters (Using Edge C	lock without PLL)		l		l			
		MachXO2-1200HC-HE	_	7.53	—	7.76		8.10	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE		7.53	—	7.76		8.10	ns
t _{COE}	Register	MachXO2-4000HC-HE		7.45	—	7.68		8.00	ns
		MachXO2-7000HC-HE	_	7.53	—	7.76		8.10	ns
. 0		MachXO2-1200HC-HE	-0.19		-0.19	—	-0.19		ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	-0.19		-0.19		-0.19		ns
^t SUE	Input Register	MachXO2-4000HC-HE	-0.16		-0.16		-0.16		ns
		MachXO2-7000HC-HE	-0.19		-0.19		-0.19		ns
		MachXO2-1200HC-HE	1.97	_	2.24		2.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	1.97	_	2.24		2.52		ns
t _{HE}	Register	MachXO2-4000HC-HE	1.89		2.16	—	2.43		ns
		MachXO2-7000HC-HE	1.97		2.24	—	2.52		ns
		MachXO2-1200HC-HE	1.56		1.69	—	2.05		ns
	Clock to Data Setup - PIO	MachXO2-2000HC-HE	1.56		1.69	—	2.05		ns
t _{SU_DELE}	Input Register with Data Input Delay	MachXO2-4000HC-HE	1.74		1.88		2.25		ns
^t HE F t _{SU_DELE} C t _{SU_DELE} C t _{H_DELE} F	Delay	MachXO2-7000HC-HE	1.66		1.81		2.17		ns
		MachXO2-1200HC-HE	-0.23		-0.23	—	-0.23		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.23		-0.23		-0.23		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000HC-HE	-0.34		-0.34		-0.34		ns
		MachXO2-7000HC-HE	-0.29		-0.29		-0.29		ns
General I/O	Pin Parameters (Using Primar								
		MachXO2-1200HC-HE	_	5.97	_	6.00	_	6.13	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	5.98	_	6.01	_	6.14	ns
t _{COPLL}	Register	MachXO2-4000HC-HE	_	5.99	_	6.02	_	6.16	ns
		MachXO2-7000HC-HE	_	6.02	_	6.06	_	6.20	ns
		MachXO2-1200HC-HE	0.36	_	0.36	_	0.65	_	ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	0.36		0.36		0.63		ns
t _{SUPLL}	Input Register	MachXO2-4000HC-HE	0.35		0.35		0.62		ns
		MachXO2-7000HC-HE	0.34	_	0.34		0.59		ns
			0.01	l	0.01	l	0.00		

			_	-6	_	5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR	X2 Outputs with Clock and Data	Centered at Pin Using P	CLK Pin	for Cloc	k Input –	GDDRX	2_TX.EC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		0.535	_	0.670	_	0.830	_	ns
t _{DVA}	Output Data Valid After CLK Output	MachXO2-640U,	0.535	_	0.670	_	0.830	_	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side only.		664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)			332	_	277	_	231	MHz
f _{SCLK}	SCLK Frequency			166	—	139		116	MHz
Generic DDF	X4 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X4_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and		0.200	_	0.215	_	0.230	ns
f _{DATA}	DDRX4 Serial Output Data Speed	larger devices, top side only.		756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency		_	378	—	315	—	262	MHz
f _{SCLK}	SCLK Frequency		_	95	—	79		66	MHz
Generic DDF	X4 Outputs with Clock and Data	Centered at Pin Using Po	CLK Pin	for Cloc	k Input –	GDDRX	4_TX.EC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		0.455	_	0.570		0.710	—	ns
t _{DVA}	Output Data Valid After CLK Output	MachXO2-640U,	0.455	_	0.570		0.710	_	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side only.		756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency (minimum limited by PLL)	ony.		378	_	315	_	262	MHz
f _{SCLK}	SCLK Frequency		_	95	—	79	—	66	MHz
7:1 LVDS Ou	utputs - GDDR71_TX.ECLK.7:1	9, 12							
t _{DIB}	Output Data Invalid Before CLK Output		_	0.160	_	0.180		0.200	ns
t _{DIA}	Output Data Invalid After CLK Output	MachXO2-640U,		0.160	_	0.180	_	0.200	ns
f _{DATA}	DDR71 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side	_	756	_	630	_	524	Mbps
f _{DDR71}	DDR71 ECLK Frequency	only.	_	378	_	315	_	262	MHz
fclkout	7:1 Output Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	-3	-	2	-1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Cloo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	150	_	125	—	104	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	—	1250		1272	—	1296	ps
		MachXO2-640ZE		1161		1183	—	1206	ps
	Primary Clock Skew Within a	MachXO2-1200ZE		1213		1267	—	1322	ps
^t SKEW_PRI	Device	MachXO2-2000ZE		1204		1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	—	1269	ps
		MachXO2-7000ZE		1243		1268	—	1296	ps
Edge Clock									
f _{MAX_EDGE⁸}	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin	Propagation Delay			1	1				1
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O I	Pin Parameters (Using Primary	Clock without PLL)	1			1		1	
		MachXO2-256ZE		10.46		10.86	—	11.25	ns
		MachXO2-640ZE		10.52		10.92	—	11.32	ns
	Clock to Output – PIO Output Register	MachXO2-1200ZE		11.24		11.68	—	12.12	ns
t _{CO}		MachXO2-2000ZE		11.27		11.71	—	12.16	ns
		MachXO2-4000ZE		11.28		11.78	—	12.28	ns
		MachXO2-7000ZE	—	11.22		11.76	—	12.30	ns
		MachXO2-256ZE	-0.21		-0.21	—	-0.21	—	ns
		MachXO2-640ZE	-0.22	—	-0.22	—	-0.22	—	ns
	Clock to Data Setup – PIO	MachXO2-1200ZE	-0.25	—	-0.25	—	-0.25	—	ns
t _{SU}	Input Register	MachXO2-2000ZE	-0.27	—	-0.27	—	-0.27	—	ns
		MachXO2-4000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33	—	-0.33		-0.33		ns
		MachXO2-256ZE	3.96		4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01		4.31	—	4.71	—	ns
+	Clock to Data Hold – PIO Input	MachXO2-1200ZE	3.95		4.29	_	4.73	_	ns
t _H	Register	MachXO2-2000ZE	3.94	—	4.29	—	4.74	—	ns
		MachXO2-4000ZE	3.96		4.36	—	4.87	—	ns
		MachXO2-7000ZE	3.93		4.37	—	4.91		ns
		IVIACHAU2-7000ZE	3.93	—	4.37		4.91		

Over Recommended Operating Conditions

Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
		LCMXO2-256	0.6	ms
		LCMXO2-640	1.0	ms
		LCMXO2-640U	1.9	ms
		LCMXO2-1200	1.9	ms
t _{REFRESH}	POR to Device I/O Active	LCMXO2-1200U	1.4	ms
		LCMXO2-2000	1.4	ms
		LCMXO2-2000U	2.4	ms
		LCMXO2-4000	2.4	ms
		LCMXO2-7000	3.8	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The Flash download time is measured starting from the maximum voltage of POR trip point.

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8		ns
t _{BTCO}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

For Further Information

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1TG100C	2112	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-2TG100C	2112	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-3TG100C	2112	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-1MG132C	2112	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-2MG132C	2112	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-3MG132C	2112	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-1TG144C	2112	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-2TG144C	2112	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-3TG144C	2112	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-1BG256C	2112	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-2BG256C	2112	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-3BG256C	2112	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-1FTG256C	2112	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-2FTG256C	2112	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-3FTG256C	2112	1.2 V	-3	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84C	4320	1.2 V	-1	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-2QN84C	4320	1.2 V	-2	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-3QN84C	4320	1.2 V	-3	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-1MG132C	4320	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-2MG132C	4320	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-3MG132C	4320	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-1TG144C	4320	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-2TG144C	4320	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-3TG144C	4320	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-1BG256C	4320	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-2BG256C	4320	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-3BG256C	4320	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-1FTG256C	4320	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-2FTG256C	4320	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-3FTG256C	4320	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-1BG332C	4320	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-2BG332C	4320	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-3BG332C	4320	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-1FG484C	4320	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-2FG484C	4320	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-3FG484C	4320	1.2 V	-3	Halogen-Free fpBGA	484	COM

R1 Device Specifications

The LCMXO2-1200ZE/HC "R1" devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices.

- The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I²C ports.
- The on-chip differential input termination resistor value is higher than intended. It is approximately 200Ω as opposed to the intended 100Ω. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software.
- Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result.
- Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details:

Condition	Clamp	Pad Rising IIH Max.	Pad Falling IIH Min.	Steady State Pad High IIH	Steady State Pad Low IIL
VPAD > VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD = VCCIO	ON	10 µA	–10 μA	10 µA	10 µA
VPAD = VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD < VCCIO	OFF	10 µA	–10 μA	10 µA	10 µA

- The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt.
- In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization.
- When using the hard I²C IP core, the I²C status registers I2C_1_SR and I2C_2_SR may not update correctly.
- PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10 μsec before returning low.
- Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3 V or 2.5 V supply.

Date	Version	Section	Change Summary
February 2012	01.7	All	Updated document with new corporate logo.
	01.6	—	Data sheet status changed from preliminary to final.
		Introduction	MachXO2 Family Selection Guide table – Removed references to 49-ball WLCSP.
		DC and Switching Characteristics	Updated Flash Download Time table.
			Modified Storage Temperature in the Absolute Maximum Ratings section.
			Updated I _{DK} max in Hot Socket Specifications table.
			Modified Static Supply Current tables for ZE and HC/HE devices.
			Updated Power Supply Ramp Rates table.
			Updated Programming and Erase Supply Current tables.
			Updated data in the External Switching Characteristics table.
			Corrected Absolute Maximum Ratings for Dedicated Input Voltage Applied for LCMXO2 HC.
			DC Electrical Characteristics table – Minor corrections to conditions for $\mathbf{I}_{IL}, \mathbf{I}_{IH.}$
		Pinout Information	Removed references to 49-ball WLCSP.
			Signal Descriptions table – Updated description for GND, VCC, and VCCIOx.
			Updated Pin Information Summary table – Number of VCCIOs, GNDs, VCCs, and Total Count of Bonded Pins for MachXO2-256, 640, and 640U and Dual Function I/O for MachXO2-4000 332caBGA.
		Ordering Information	Removed references to 49-ball WLCSP
August 2011	01.5	DC and Switching Characteristics	Updated ESD information.
		Ordering Information	Updated footnote for ordering WLCSP devices.
	01.4	Architecture	Updated information in Clock/Control Distribution Network and sys- CLOCK Phase Locked Loops (PLLs).
		DC and Switching Characteristics	Updated ${\rm I}_{\rm IL}$ and ${\rm I}_{\rm IH}$ conditions in the DC Electrical Characteristics table.
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Updated Pin Information Summary table: Dual Function I/O, DQS Groups Bank 1, Total General Purpose Single-Ended I/O, Differential I/O Per Bank, Total Count of Bonded Pins, Gearboxes.
			Added column of data for MachXO2-2000 49 WLCSP.
		Ordering Information	Updated R1 Device Specifications text section with information on migration from MachXO2-1200-R1 to Standard (non-R1) devices.
			Corrected Supply Voltage typo for part numbers: LCMX02-2000UHE- 4FG484I, LCMX02-2000UHE-5FG484I, LCMX02-2000UHE- 6FG484I.
			Added footnote for WLCSP package parts.
		Supplemental Information	Removed reference to Stand-alone Power Calculator for MachXO2 Devices. Added reference to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices.

Date	Version	Section	Change Summary
May 2011	01.3	Multiple	Replaced "SED" with "SRAM CRC Error Detection" throughout the document.
	DC and Switching Characteristics	Added footnote 1 to Program Erase Specifications table.	
		Pinout Information	Updated Pin Information Summary tables.
			Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table.
April 2011	01.2	_	Data sheet status changed from Advance to Preliminary.
		Introduction	Updated MachXO2 Family Selection Guide table.
		Architecture	Updated Supported Input Standards table.
			Updated sysMEM Memory Primitives diagram.
			Added differential SSTL and HSTL IO standards.
		DC and Switching Characteristics	Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current.
			Added VREF specifications to sysIO recommended operating condi- tions.
			Updating timing information based on characterization.
			Added differential SSTL and HSTL IO standards.
		Ordering Information	Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages.
			Added R1 device specifications.
January 2011	01.1	All	Included ultra-high I/O devices.
		DC and Switching Characteristics	Recommended Operating Conditions table – Added footnote 3.
			DC Electrical Characteristics table – Updated data for $\rm I_{IL}, I_{IH}, V_{HYST}$ typical values updated.
			Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Power-On-Reset Voltage Levels table - clarified note 3.
			Clarified VCCIO related recommended operating conditions specifications.
			Added power supply ramp rate requirements.
			Added Power Supply Ramp Rates table.
			Updated Programming/Erase Specifications table.
			Removed references to V _{CCP.}
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Removed references to V _{CCP.}
November 2010	01.0	—	Initial release.