E ·) < Fattce Semiconductor Corporation - <u>LCMX02-2000HC-6TG100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2 0 0 0 0 0	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	79
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000hc-6tg100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the MachXO2 family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found in MachXO2-640/U and larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage.

The MachXO2 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO2 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks on MachXO2-640U, MachXO2-1200/U and larger devices. These blocks are located at the ends of the on-chip Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

MachXO2 devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/ counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports.

Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO2 devices are available for operation from 3.3 V, 2.5 V and 1.2 V power supplies, providing easy integration into the overall system.

PFU Blocks

The core of the MachXO2 device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

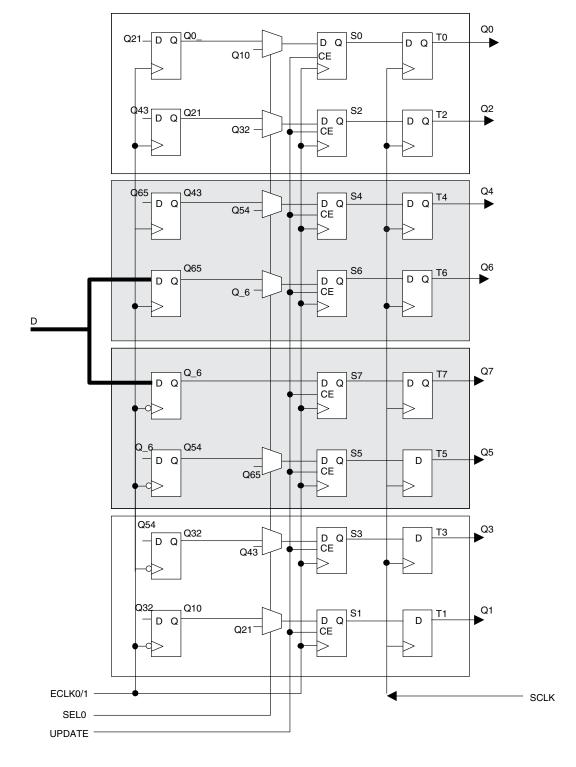
The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.


Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

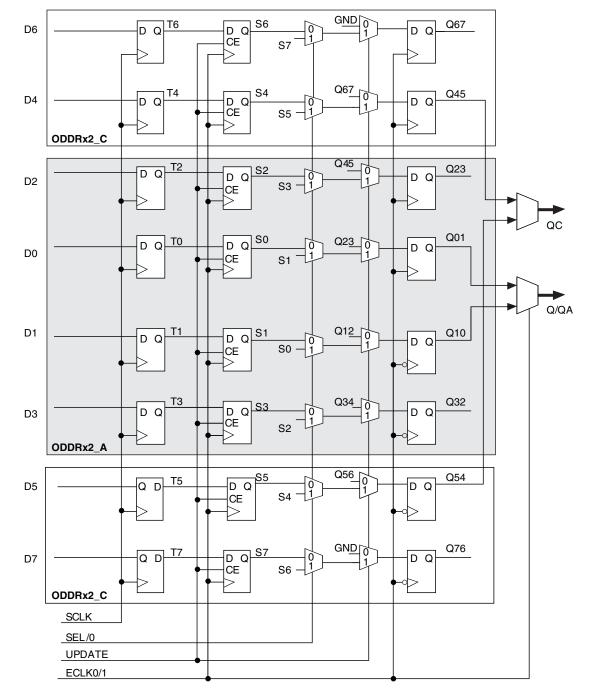

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

Figure 2-17. Output Gearbox

More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

MachXO2-640U, MachXO2-1200/U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential and referenced input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential and referenced input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential and referenced I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver. The referenced input buffer can also be configured as a differential input buffer.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

Supported Standards

The MachXO2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO2-640U, MachXO2-1200/U and higher devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO2 devices. PCI support is provided in the bottom bank of theMachXO2-640U, MachXO2-1200/U and higher density devices. Table 2-11 summarizes the I/O characteristics of the MachXO2 PLDs.

Tables 2-11 and 2-12 show the I/O standards (together with their supply and reference voltages) supported by the MachXO2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1202, MachXO2 sysIO Usage Guide.

Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

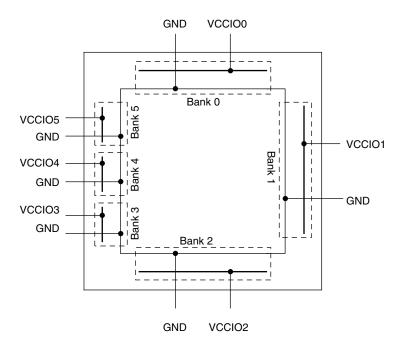
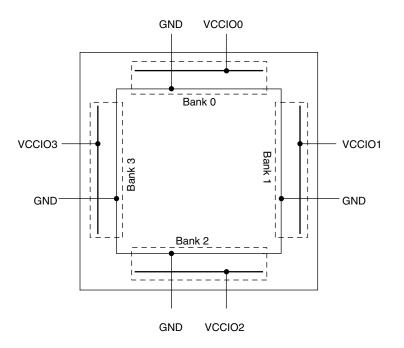
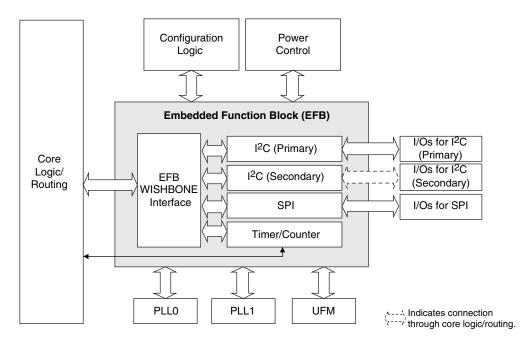




Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	/ _{IL}	V _I	н	V _{OL} Max.	V _{OH} Min.	l _{OL} Max.⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
							4	-4
				3.6			8	-8
LVCMOS 3.3	-0.3	0.8	2.0		0.4	$V_{CCIO} - 0.4$	12	-12
LVTTL	0.0	0.0	2.0	0.0			16	-16
							24	-24
					0.2	V _{CCIO} – 0.2	0.1	-0.1
							4	-4
					0.4	V _{CCIO} – 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	VCCIO 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	$V_{CCIO} - 0.4$	8	-8
	-0.5	0.33 v CCIO	0.03 v CCIO	5.0			12	-12
					0.2	V _{CCIO} – 0.2	0.1	-0.1
					0.4	V _{CCIO} – 0.4	4	-4
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	VCCIO - 0.4	8	-8
					0.2	V _{CCIO} – 0.2	0.1	-0.1
	0.1	0.4	V _{CCIO} – 0.4	4	-2			
LVCMOS 1.2	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	VCCIO 0.4	8	-6
					0.2	$V_{CCIO} - 0.2$	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5
SSTL25 Class I	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	8	8
SSTL25 Class II	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	NA	NA	NA	NA
SSTL18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	0.40	V _{CCIO} - 0.40	8	8
SSTL18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	NA	NA	NA	NA
HSTL18 Class I	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	V _{CCIO} - 0.40	8	8
HSTL18 Class II	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS25R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain

Typical Building Block Function Performance – HC/HE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

Maximum sysIO Buffer Performance

I/O Standard	Max. Speed	Units
LVDS25	400	MHz
LVDS25E	150	MHz
RSDS25	150	MHz
RSDS25E	150	MHz
BLVDS25	150	MHz
BLVDS25E	150	MHz
MLVDS25	150	MHz
MLVDS25E	150	MHz
LVPECL33	150	MHz
LVPECL33E	150	MHz
SSTL25_I	150	MHz
SSTL25_II	150	MHz
SSTL25D_I	150	MHz
SSTL25D_II	150	MHz
SSTL18_I	150	MHz
SSTL18_II	150	MHz
SSTL18D_I	150	MHz
SSTL18D_II	150	MHz
HSTL18_I	150	MHz
HSTL18_II	150	MHz
HSTL18D_I	150	MHz
HSTL18D_II	150	MHz
PCI33	134	MHz
LVTTL33	150	MHz
LVTTL33D	150	MHz
LVCMOS33	150	MHz
LVCMOS33D	150	MHz
LVCMOS25	150	MHz
LVCMOS25D	150	MHz
LVCMOS25R33	150	MHz
LVCMOS18	150	MHz
LVCMOS18D	150	MHz
LVCMOS18R33	150	MHz
LVCMOS18R25	150	MHz
LVCMOS15	150	MHz
LVCMOS15D	150	MHz
LVCMOS15R33	150	MHz
LVCMOS15R25	150	MHz
LVCMOS12	91	MHz
LVCMOS12D	91	MHz

			-	6	-	5	-		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256HC-HE	1.42	—	1.59	—	1.96	—	ns
		MachXO2-640HC-HE	1.41	—	1.58	—	1.96	—	ns
•	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-1200HC-HE	1.63		1.79		2.17		ns
^t SU_DEL	Delay	MachXO2-2000HC-HE	1.61		1.76		2.13		ns
		MachXO2-4000HC-HE	1.66	—	1.81	—	2.19	—	ns
		MachXO2-7000HC-HE	1.53	—	1.67	—	2.03	—	ns
		MachXO2-256HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
		MachXO2-640HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
•	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
		MachXO2-4000HC-HE	-0.25	—	-0.25	—	-0.25	—	ns
		MachXO2-7000HC-HE	-0.21	_	-0.21		-0.21	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	388		323	_	269	MHz
General I/O	Pin Parameters (Using Edge C	lock without PLL)		l		l			
		MachXO2-1200HC-HE	_	7.53	—	7.76		8.10	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE		7.53	—	7.76		8.10	ns
t _{COE}	Register	MachXO2-4000HC-HE		7.45	—	7.68		8.00	ns
		MachXO2-7000HC-HE	_	7.53	—	7.76		8.10	ns
	Clock to Data Setup – PIO Input Register	MachXO2-1200HC-HE	-0.19		-0.19	—	-0.19		ns
t _{SUE}		MachXO2-2000HC-HE	-0.19		-0.19		-0.19		ns
		MachXO2-4000HC-HE	-0.16		-0.16		-0.16		ns
		MachXO2-7000HC-HE	-0.19		-0.19		-0.19		ns
		MachXO2-1200HC-HE	1.97	_	2.24		2.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	1.97	_	2.24		2.52		ns
t _{HE}	Register	MachXO2-4000HC-HE	1.89		2.16	—	2.43		ns
		MachXO2-7000HC-HE	1.97		2.24	—	2.52		ns
		MachXO2-1200HC-HE	1.56		1.69	—	2.05		ns
	Clock to Data Setup - PIO	MachXO2-2000HC-HE	1.56		1.69	—	2.05		ns
t _{SU_DELE}	Input Register with Data Input Delay	MachXO2-4000HC-HE	1.74		1.88		2.25		ns
	Delay	MachXO2-7000HC-HE	1.66		1.81		2.17		ns
		MachXO2-1200HC-HE	-0.23		-0.23	—	-0.23		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.23		-0.23		-0.23		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000HC-HE	-0.34		-0.34		-0.34		ns
		MachXO2-7000HC-HE	-0.29		-0.29		-0.29		ns
General I/O	Pin Parameters (Using Primar								
		MachXO2-1200HC-HE	_	5.97	_	6.00	_	6.13	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	5.98	_	6.01	_	6.14	ns
t _{COPLL}	Register	MachXO2-4000HC-HE	_	5.99	_	6.02	_	6.16	ns
		MachXO2-7000HC-HE	_	6.02	_	6.06	_	6.20	ns
		MachXO2-1200HC-HE	0.36	_	0.36	_	0.65	_	ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	0.36		0.36		0.63		ns
t _{SUPLL}	Input Register	MachXO2-4000HC-HE	0.35		0.35		0.62		ns
	_	MachXO2-7000HC-HE	0.34	_	0.34		0.59		ns
			0.01	l	0.01	l	0.00		

			-	-6	_	5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200HC-HE	0.41		0.48		0.55		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	0.42		0.49		0.56		ns
LUDII	Register	MachXO2-4000HC-HE	0.43		0.50	—	0.58	—	ns
		MachXO2-7000HC-HE	0.46		0.54	—	0.62	—	ns
		MachXO2-1200HC-HE	2.88	—	3.19	—	3.72	—	ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	2.87	—	3.18	—	3.70	—	ns
t _{SU_DELPLL}	Input Register with Data Input Delay	MachXO2-4000HC-HE	2.96	—	3.28	—	3.81	—	ns
		MachXO2-7000HC-HE	3.05	—	3.35	—	3.87	—	ns
		MachXO2-1200HC-HE	-0.83	—	-0.83		-0.83		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.83	—	-0.83	—	-0.83	—	ns
^t H_DELPLL	Register with Input Data Delay	MachXO2-4000HC-HE	-0.87	—	-0.87	—	-0.87	—	ns
		MachXO2-7000HC-HE	-0.91	—	-0.91	—	-0.91	—	ns
Generic DDF	RX1 Inputs with Clock and Data	Aligned at Pin Using PC	LK Pin	for Cloc	k Input -	GDDR	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK			0.317		0.344		0.368	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2 devices,	0.742	—	0.702		0.668		UI
f _{DATA}	DDRX1 Input Data Speed	all sides	_	300	—	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150	—	125	—	104	MHz
Generic DDF	X1 Inputs with Clock and Data C	Centered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.566		0.560		0.538		ns
t _{HO}	Input Data Hold After CLK	All MachXO2 devices,	0.778		0.879	—	1.090	_	ns
f _{DATA}	DDRX1 Input Data Speed	all sides	_	300	—	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150	—	125	—	104	MHz
Generic DDF	RX2 Inputs with Clock and Data	Aligned at Pin Using PC	LK Pin 1	for Clock	< Input –	GDDRX	2_RX.E	CLK.Alię	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.316		0.342		0.364	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.710		0.675	—	0.679	_	UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	332	—	277	—	231	MHz
f _{SCLK}	SCLK Frequency		_	166	—	139	—	116	MHz
Generic DDF	X2 Inputs with Clock and Data C	Centered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	2_RX.EC	LK.Cent	ered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219		0.198		ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.287	—	0.287		0.344		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		332		277	_	231	MHz
f _{SCLK}	SCLK Frequency	1	_	166	_	139		116	MHz
	· · ·		L	l	1	1	1	1	

sysCLOCK PLL Timing (Continued)

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
t _{ROTATE_WD}	PHASESTEP Pulse Width		4	_	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum f_{PFD} As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications

Symbol	Pa	Parameter		Max.	Units
All Configuration M	odes		1		
t _{PRGM}	PROGRAMN low p	oulse accept	55	—	ns
t _{PRGMJ}	PROGRAMN low p	oulse rejection	—	25	ns
t _{INITL}	INITN low time	LCMXO2-256	—	30	μs
		LCMXO2-640	—	35	μs
		LCMXO2-640U/ LCMXO2-1200	—	55	μs
		LCMXO2-1200U/ LCMXO2-2000	—	70	μs
		LCMXO2-2000U/ LCMXO2-4000	—	105	μs
		LCMXO2-7000	_	130	μs
t _{DPPINIT}	PROGRAMN low to	o INITN low	—	150	ns
t _{DPPDONE}	PROGRAMN low to	o DONE low	—	150	ns
t _{IODISS}	PROGRAMN low to	o I/O disable	—	120	ns
Slave SPI			•		•
f _{MAX}	CCLK clock freque	ncy	—	66	MHz
t _{CCLKH}	CCLK clock pulse	width high	7.5	—	ns
t _{CCLKL}	CCLK clock pulse	width low	7.5	—	ns
t _{STSU}	CCLK setup time		2	—	ns
t _{STH}	CCLK hold time		0	—	ns
t _{STCO}	CCLK falling edge	to valid output	—	10	ns
t _{STOZ}	CCLK falling edge	to valid disable	—	10	ns
t _{STOV}	CCLK falling edge	to valid enable	—	10	ns
t _{SCS}	Chip select high tin	ne	25	—	ns
t _{SCSS}	Chip select setup t	ime	3	—	ns
t _{SCSH}	Chip select hold tin	ne	3	—	ns
Master SPI	·				
f _{MAX}	MCLK clock freque	MCLK clock frequency		133	MHz
t _{MCLKH}	MCLK clock pulse	MCLK clock pulse width high		—	ns
t _{MCLKL}	MCLK clock pulse	MCLK clock pulse width low		—	ns
t _{STSU}	MCLK setup time			—	ns
t _{STH}	MCLK hold time		1	—	ns
t _{CSSPI}	INITN high to chip	select low	100	200	ns
t _{MCLK}	INITN high to first I	VCLK edge	0.75	1	μs

MachXO2 Family Data Sheet Pinout Information

March 2017

Data Sheet DS1035

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	—	No connect.
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. For QFN 48 package, the exposed die pad is the device ground.
VCC	_	V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIOx	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]	—	Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual f	function pins used for test access port and during sysCONFIG™)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	I	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.
Configuration (Dual fu	nction p	ins used during sysCONFIG)
PROGRAMN	I	Initiates configuration sequence when asserted low. During configuration, or when reserved as PROGRAMN in user mode, this pin always has an active pull-up.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pinout Information Summary

	MachXO2-256			MachXO2-640			MachXO2-640L		
	32 QFN ¹	48 QFN ³	64 ucBGA	100 TQFP	132 csBGA	48 QFN ³	100 TQFP	132 csBGA	144 TQFP
General Purpose I/O per Bank	•		•				•	•	
Bank 0	8	10	9	13	13	10	18	19	27
Bank 1	2	10	12	14	14	10	20	20	26
Bank 2	9	10	11	14	14	10	20	20	28
Bank 3	2	10	12	14	14	10	20	20	26
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Single Ended I/O	21	40	44	55	55	40	78	79	107
Differential I/O per Bank									
Bank 0	4	5	5	7	7	5	9	10	14
Bank 1	1	5	6	7	7	5	10	10	13
Bank 2	4	5	5	7	7	5	10	10	14
Bank 3	1	5	6	7	7	5	10	10	13
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Differential I/O	10	20	22	28	28	20	39	40	54
Dual Function I/O	22	25	27	29	29	25	29	29	33
High-speed Differential I/O	1	1		1				1	
Bank 0	0	0	0	0	0	0	0	0	7
Gearboxes									•
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	0	0	0	0	0	0	0	0	7
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	0	0	0	0	0	0	0	0	7
DQS Groups									•
Bank 1	0	0	0	0	0	0	0	0	2
VCCIO Pins									
Bank 0	2	2	2	2	2	2	2	2	3
Bank 1	1	1	2	2	2	1	2	2	3
Bank 2	2	2	2	2	2	2	2	2	3
Bank 3	1	1	2	2	2	1	2	2	3
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
VCC	2	2	2	2	2	2	2	2	4
GND ²	2	1	8	8	8	1	8	10	12
NC	0	0	1	26	58	0	3	32	8
Reserved for Configuration	1	1	1	1	1	1	1	1	1
Total Count of Bonded Pins	32	49	64	100	132	49	100	132	144

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

2. For 48 QFN package, exposed die pad is the device ground.

3. 48-pin QFN information is 'Advanced'.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-6BG332C	4320	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HE-4FG484C	4320	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-5FG484C	4320	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-6FG484C	4320	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HE-4TG144C	6864	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-5TG144C	6864	1.2 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-6TG144C	6864	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-4BG256C	6864	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-5BG256C	6864	1.2 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-6BG256C	6864	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-4FTG256C	6864	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-5FTG256C	6864	1.2 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-6FTG256C	6864	1.2 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-4BG332C	6864	1.2 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-5BG332C	6864	1.2 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-6BG332C	6864	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-4FG484C	6864	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-5FG484C	6864	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-6FG484C	6864	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84I	4320	1.2 V	-1	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-2QN84I	4320	1.2 V	-2	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-3QN84I	4320	1.2 V	-3	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-1MG132I	4320	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-2MG132I	4320	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-3MG132I	4320	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-1TG144I	4320	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-2TG144I	4320	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-3TG144I	4320	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-1BG256I	4320	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-2BG256I	4320	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-3BG256I	4320	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-1FTG256I	4320	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-2FTG256I	4320	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-3FTG256I	4320	1.2 V	-3	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-1BG332I	4320	1.2 V	-1	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-2BG332I	4320	1.2 V	-2	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-3BG332I	4320	1.2 V	-3	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-1FG484I	4320	1.2 V	-1	Halogen-Free fpBGA	484	IND
LCMXO2-4000ZE-2FG484I	4320	1.2 V	-2	Halogen-Free fpBGA	484	IND
LCMXO2-4000ZE-3FG484I	4320	1.2 V	-3	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000ZE-1TG144I	6864	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-2TG144I	6864	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-3TG144I	6864	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-1BG256I	6864	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-2BG256I	6864	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-3BG256I	6864	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-1FTG256I	6864	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-2FTG256I	6864	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-3FTG256I	6864	1.2 V	-3	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-1BG332I	6864	1.2 V	-1	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-2BG332I	6864	1.2 V	-2	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-3BG332I	6864	1.2 V	-3	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-1FG484I	6864	1.2 V	-1	Halogen-Free fpBGA	484	IND
LCMXO2-7000ZE-2FG484I	6864	1.2 V	-2	Halogen-Free fpBGA	484	IND
LCMXO2-7000ZE-3FG484I	6864	1.2 V	-3	Halogen-Free fpBGA	484	IND