
E · Clattice Semiconductor Corporation - <u>LCMXO2-2000HE-5FTG256C Datasheet</u>

Welcome to E-XFL.COM

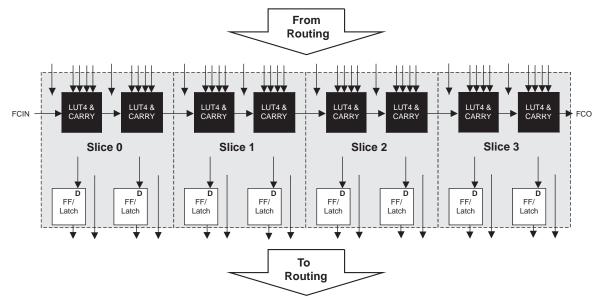
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	206
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000he-5ftg256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. PFU Block Diagram

Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

	PFU Block					
Slice	Resources	Modes				
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM				

Table 2-1. Resources and Modes Available per Slice

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

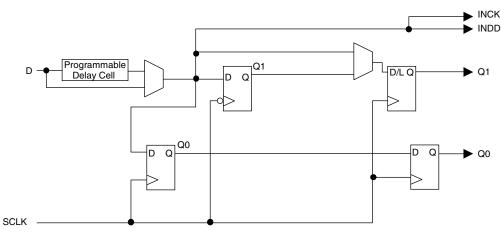
Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO2 devices support distributed memory initialization.

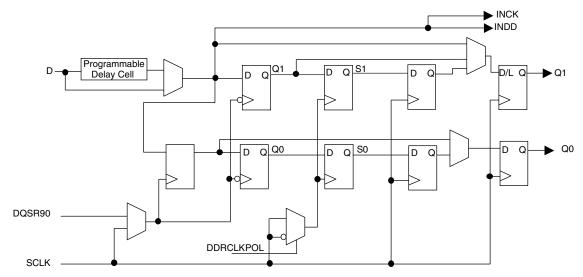
The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO2 devices, please see TN1201, Memory Usage Guide for MachXO2 Devices.


Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4					
Number of slices	3	3					
Note: SPB = Single Port BAM_PDPB = Pseudo Dual Port BAM							

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

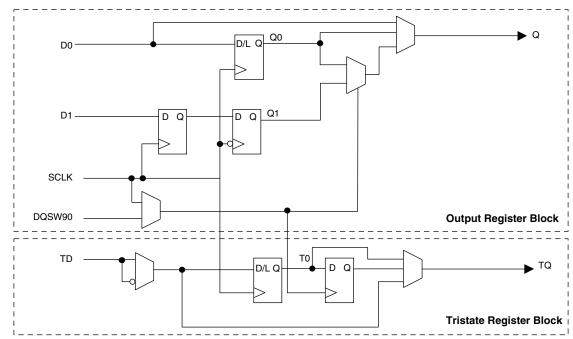

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

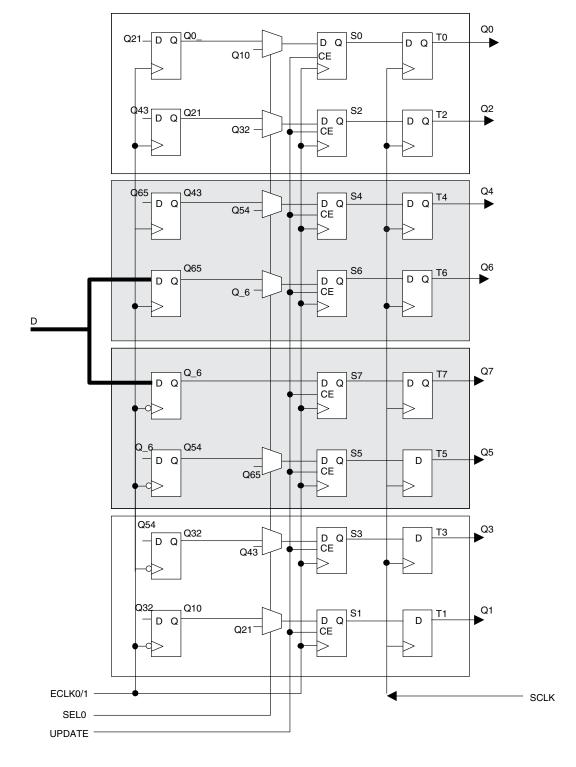
Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

The tri-state register blocks on the right edge contain an additional register for DDR memory operation. In DDR memory mode, the register TS input is fed into another register that is clocked using the DQSW90 signal. The output of this register is used as a tri-state control.

Input Gearbox


Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

DDR Memory Support

Certain PICs on the right edge of MachXO2-640U, MachXO2-1200/U and larger devices, have additional circuitry to allow the implementation of DDR memory interfaces. There are two groups of 14 or 12 PIOs each on the right edge with additional circuitry to implement DDR memory interfaces. This capability allows the implementation of up to 16-bit wide memory interfaces. One PIO from each group contains a control element, the DQS Read/Write Block, to facilitate the generation of clock and control signals (DQSR90, DQSW90, DDRCLKPOL and DATAVALID). These clock and control signals are distributed to the other PIO in the group through dedicated low skew routing.

DQS Read Write Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Read Write block provides the required clock alignment for DDR memory interfaces. DQSR90 and DQSW90 signals are generated by the DQS Read Write block from the DQS input.

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. The MachXO2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This circuit changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each read cycle for the correct clock polarity. Prior to the read operation in DDR memories, DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit in the DQS Read Write block detects the first DQS rising edge after the preamble state and generates the DDRCLKPOL signal. This signal is used to control the polarity of the clock to the synchronizing registers.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration signals (6-bit bus) from a DLL on the right edge of the device. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, SSTL, HSTL, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO2 devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) and referenced input buffers (SSTL and HSTL) are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} . In addition, each bank has a voltage reference, V_{REF} which allows the use of referenced input buffers independent of the bank V_{CCIO} .

MachXO2-256 and MachXO2-640 devices contain single-ended ratioed input buffers and single-ended output buffers with complementary outputs on all the I/O banks. Note that the single-ended input buffers on these devices do not contain PCI clamps. In addition to the single-ended I/O buffers these two devices also have differential and referenced input buffers on all I/Os. The I/Os are arranged in pairs, the two pads in the pair are described as "T" and "C", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

MachXO2-640U, MachXO2-1200/U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 devices contain three types of sysIO buffer pairs.

1. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential and referenced input buffers.

2. Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential and referenced input buffers. Only the I/Os on the bottom banks have programmable PCI clamps and differential input termination. The PCI clamp is enabled after V_{CC} and V_{CCIO} are at valid operating levels and the device has been configured.

3. Top sysIO Buffer Pairs

The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential and referenced I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver. The referenced input buffer can also be configured as a differential input buffer.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCIO0} have reached V_{PORUP} level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to V_{CCIO} as the default functionality). The I/O pins will maintain the blank configuration until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached V_{PORUP} levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration.

Supported Standards

The MachXO2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO2-640U, MachXO2-1200/U and higher devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO2 devices. PCI support is provided in the bottom bank of theMachXO2-640U, MachXO2-1200/U and higher density devices. Table 2-11 summarizes the I/O characteristics of the MachXO2 PLDs.

Tables 2-11 and 2-12 show the I/O standards (together with their supply and reference voltages) supported by the MachXO2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1202, MachXO2 sysIO Usage Guide.

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

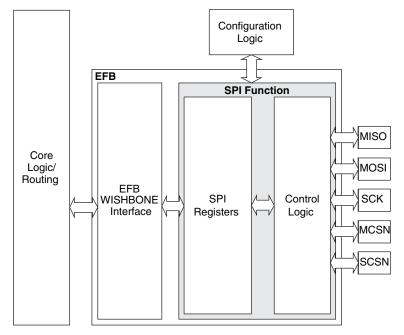


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description			
spi_csn[0]	0	Master	SPI master chip-select output			
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)			
spi_scsn	I	Slave	SPI slave chip-select input			
spi_irq	0	Master/Slave	Interrupt request			
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.			
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.			
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.			
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).			
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.			
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.			

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
1	Core Power Supply	LCMXO2-2000HC	4.80	mA
ICC		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Іссю	Bank Power Supply⁵ V _{CCIO} = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. $T_J = 25$ °C, power supplies at nominal voltage.

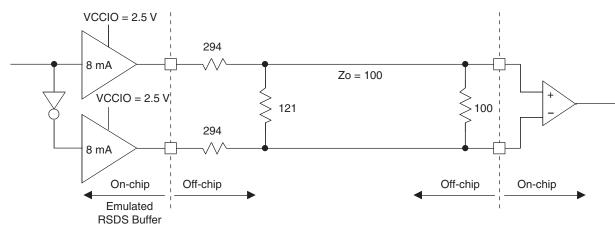
6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)			
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.6	—	—	—		
LVCMOS 2.5	2.375	2.5	2.625	—	—	—		
LVCMOS 1.8	1.71	1.8	1.89	—	—	—		
LVCMOS 1.5	1.425	1.5	1.575	—	—	—		
LVCMOS 1.2	1.14	1.2	1.26	—	—	_		
LVTTL	3.135	3.3	3.6	—	—	—		
PCI ³	3.135	3.3	3.6	—	_	—		
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35		
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969		
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08		
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4		
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05		
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05		
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9		
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9		
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75		
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75		
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65		
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65		
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_		
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—		
LVPECL ¹	3.135	3.3	3.6	—	—	—		
BLVDS ¹	2.375	2.5	2.625	—	—	—		
RSDS ¹	2.375	2.5	2.625	—	—	—		
SSTL18D	1.71	1.8	1.89	—	—	—		
SSTL25D	2.375	2.5	2.625	—	—			
HSTL18D	1.71	1.8	1.89	—	—	—		

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.


3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

RSDS

The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

			-	-6	6 –5		-	-4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDF	R4 Inputs with Clock and Data A	Aligned at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320		0.345	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.739	—	0.699		0.703	—	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378		315		262	MHz
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz
	4 Inputs with Clock and Data C	entered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	4_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	0.198	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.287	—	0.287		0.344	—	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378	—	315		262	MHz
f _{SCLK}	SCLK Frequency			95	—	79	_	66	MHz
7:1 LVDS In	puts (GDDR71_RX.ECLK.7:1) ^{9,}	12							
t _{DVA}	Input Data Valid After ECLK			0.290		0.320		0.345	UI
t _{DVE}	Input Data Hold After ECLK		0.739	—	0.699		0.703	—	UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only. ¹¹	_	756	_	630	_	524	Mbps
f _{DDR71}	DDR71 ECLK Frequency			378		315		262	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz
Generic DDF	R Outputs with Clock and Data	Aligned at Pin Using PC	LK Pin f	for Clock	k Input –	GDDR	(1_TX.S	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output			0.520	_	0.550	_	0.580	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides.	_	0.520	_	0.550	_	0.580	ns
f _{DATA}	DDRX1 Output Data Speed			300		250		208	Mbps
f _{DDRX1}	DDRX1 SCLK frequency	-		150	—	125		104	MHz
	Outputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		1.210	_	1.510	_	1.870	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2 devices,	1.210	_	1.510	_	1.870	_	ns
f _{DATA}	DDRX1 Output Data Speed	all sides.		300	—	250	_	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	-		150	_	125	_	104	MHz
Generic DDF	X2 Outputs with Clock and Data	a Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and	_	0.200	_	0.215	_	0.230	ns
f _{DATA}	DDRX2 Serial Output Data Speed	larger devices, top side only.	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK frequency	1		332	—	277	—	231	MHz
f _{SCLK}	SCLK Frequency	1	—	166	—	139	_	116	MHz

			_	-6	_	-5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}			l		L	I		L	<u> </u>
t _{DVADQ}	Input Data Valid After DQS Input		_	0.369	_	0.395	_	0.421	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.529	_	0.530	_	0.527	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	280	_	250	—	208	Mbps
f _{SCLK}	SCLK Frequency			140	—	125		104	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	280	0	250	0	208	Mbps
DDR ^{9, 12}			•						
t _{DVADQ}	Input Data Valid After DQS Input	-	_	0.350	_	0.387	_	0.414	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.545	_	0.538	_	0.532	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices, right	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed		—	300	—	250	—	208	Mbps
f _{SCLK}	SCLK Frequency		—	150	—	125	—	104	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps
DDR2 ^{9, 12}									
t _{DVADQ}	Input Data Valid After DQS Input		_	0.360	_	0.378	_	0.406	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.555	_	0.549	_	0.542	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed			300		250		208	Mbps
f _{SCLK}	SCLK Frequency	1		150	_	125		104	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

8. This number for general purpose usage. Duty cycle tolerance is +/- 10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32 QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

			-	-3 -		-2	- 1	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200ZE	0.66	_	0.68		0.80		ns
t _{HPLL}	Clock to Data Hold – PIO Input	MachXO2-2000ZE	0.68	—	0.70	—	0.83	—	ns
	Register	MachXO2-4000ZE	0.68	—	0.71	—	0.84	—	ns
		MachXO2-7000ZE	0.73	—	0.74	—	0.87	—	ns
-		MachXO2-1200ZE	5.14	—	5.69	—	6.20	—	ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	5.11	—	5.67	—	6.17	—	ns
^t SU_DELPLL	Input Register with Data Input Delay	MachXO2-4000ZE	5.27	—	5.84		6.35	—	ns
		MachXO2-7000ZE	5.15	—	5.71	—	6.23	—	ns
-		MachXO2-1200ZE	-1.36	—	-1.36	—	-1.36	—	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-1.35	—	-1.35		-1.35		ns
^t H_DELPLL		MachXO2-4000ZE	-1.43		-1.43		-1.43		ns
		MachXO2-7000ZE	-1.41		-1.41		-1.41		ns
Generic DDR	X1 Inputs with Clock and Data A	ligned at Pin Using P	CLK Pin	for Cloc	k Input -	- GDDR)	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.382	—	0.401	—	0.417	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2	0.670	—	0.684		0.693	—	UI
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency			70		58	—	49	MHz
	X1 Inputs with Clock and Data Ce	entered at Pin Using Po	LK Pin f	or Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		1.319		1.412		1.462		ns
t _{HO}	Input Data Hold After CLK	All MachXO2	0.717	_	1.010		1.340		ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides		140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	Generic DDRX2 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX2_RX.ECLK.Aligned ^{9, 12}								
t _{DVA}	Input Data Valid After CLK		—	0.361		0.346	—	0.334	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.602	—	0.625		0.648		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		140		117	—	97	MHz
f _{SCLK}	SCLK Frequency			70		59	—	49	MHz
	X2 Inputs with Clock and Data Ce	entered at Pin Using P	CLK Pin f	or Clock	Input –	GDDRX	2_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.472		0.672		0.865		ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.363	_	0.501		0.743		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		140		117	_	97	MHz
f _{SCLK}	SCLK Frequency			70		59	_	49	MHz
	4 Inputs with Clock and Data A	ligned at Pin Using PC	LK Pin	for Cloc	k Input -	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		_	0.307		0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.662		0.650		0.649	_	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	_	210	_	176	_	146	MHz
f _{SCLK}	SCLK Frequency			53	—	44	—	37	MHz
SOLIN	1 - 7		1	-	1	1	1	1	i

			-3		_	2	_	1		
Parameter	Description	Device		Max.	Min.	Max.	Min.	Max.	Units	
Generic DDR	Generic DDR4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Centered ^{9, 12}									
t _{SU}	Input Data Setup Before ECLK		0.434		0.535	—	0.630	—	ns	
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.385	—	0.395	—	0.463	—	ns	
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	—	420	_	352	_	292	Mbps	
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	—	210	—	176	—	146	MHz	
f _{SCLK}	SCLK Frequency		—	53	—	44		37	MHz	
	uts – GDDR71_RX.ECLK.7.1 ^{9, 1}	2								
t _{DVA}	Input Data Valid After ECLK		—	0.307	—	0.316		0.326	UI	
t _{DVE}	Input Data Hold After ECLK		0.662	—	0.650		0.649		UI	
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U	_	420	_	352	_	292	Mbps	
f _{DDR71}	DDR71 ECLK Frequency	and larger devices, bottom side only ¹¹	—	210	—	176	—	146	MHz	
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)	bottom side only	_	60		50	_	42	MHz	
Generic DDR	Generic DDR Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Aligned ^{9, 12}								jned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output		—	0.850	—	0.910	—	0.970	ns	
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides	_	0.850	_	0.910	_	0.970	ns	
f _{DATA}	DDRX1 Output Data Speed	· · · ·		140		116		98	Mbps	
f _{DDRX1}	DDRX1 SCLK frequency		—	70	—	58	—	49	MHz	
	Outputs with Clock and Data Ce	ntered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}	
t _{DVB}	Output Data Valid Before CLK Output		2.720	_	3.380	_	4.140		ns	
t _{DVA}	Output Data Valid After CLK Output	All MachXO2	2.720	_	3.380	_	4.140		ns	
f _{DATA}	DDRX1 Output Data Speed	devices, all sides	—	140	—	116	—	98	Mbps	
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)		_	70	_	58	_	49	MHz	
Generic DDR	X2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output			0.270		0.300		0.330	ns	
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U	_	0.270	_	0.300	_	0.330	ns	
f _{DATA}	DDRX2 Serial Output Data Speed	and larger devices, top side only	_	280	_	234	_	194	Mbps	
f _{DDRX2}	DDRX2 ECLK frequency	1		140		117	—	97	MHz	
f _{SCLK}	SCLK Frequency		_	70	_	59	—	49	MHz	

sysCONFIG Port Timing Specifications

Symbol	Pa	Parameter			Units
All Configuration M	odes		1		
t _{PRGM}	PROGRAMN low p	oulse accept	55	—	ns
t _{PRGMJ}	PROGRAMN low p	PROGRAMN low pulse rejection			ns
t _{INITL}	INITN low time	LCMXO2-256	—	30	μs
		LCMXO2-640	—	35	μs
		LCMXO2-640U/ LCMXO2-1200	—	55	μs
		LCMXO2-1200U/ LCMXO2-2000	—	70	μs
		LCMXO2-2000U/ LCMXO2-4000	—	105	μs
		LCMXO2-7000	_	130	μs
t _{DPPINIT}	PROGRAMN low to	o INITN low	—	150	ns
t _{DPPDONE}	PROGRAMN low to	o DONE low	—	150	ns
t _{IODISS}	PROGRAMN low to	o I/O disable	—	120	ns
Slave SPI			•		
f _{MAX}	CCLK clock freque	ncy	—	66	MHz
t _{CCLKH}	CCLK clock pulse	width high	7.5	—	ns
t _{CCLKL}	CCLK clock pulse	width low	7.5	—	ns
t _{STSU}	CCLK setup time	CCLK setup time			ns
t _{STH}	CCLK hold time	CCLK hold time		—	ns
t _{STCO}	CCLK falling edge	to valid output	—	10	ns
t _{STOZ}	CCLK falling edge	to valid disable	—	10	ns
t _{STOV}	CCLK falling edge	to valid enable	—	10	ns
t _{SCS}	Chip select high tin	ne	25	—	ns
t _{SCSS}	Chip select setup t	ime	3	—	ns
t _{SCSH}	Chip select hold tin	ne	3	—	ns
Master SPI			•		
f _{MAX}	MCLK clock freque	ency	—	133	MHz
t _{MCLKH}	MCLK clock pulse	MCLK clock pulse width high			ns
t _{MCLKL}	MCLK clock pulse	MCLK clock pulse width low			ns
t _{STSU}	MCLK setup time		5	—	ns
t _{STH}	MCLK hold time		1	—	ns
t _{CSSPI}	INITN high to chip	INITN high to chip select low			ns
t _{MCLK}	INITN high to first I	VCLK edge	0.75	1	μs

MachXO2 Family Data Sheet Pinout Information

March 2017

Data Sheet DS1035

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	_	No connect.
GND		GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. For QFN 48 package, the exposed die pad is the device ground.
VCC		V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIOx -		VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB		Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]		Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual 1	function pins used for test access port and during sysCONFIG™)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	Ι	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.
Configuration (Dual fu	nction p	ins used during sysCONFIG)
PROGRAMN	Ι	Initiates configuration sequence when asserted low. During configuration, or when reserved as PROGRAMN in user mode, this pin always has an active pull-up.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, or when reserved as INITn in user mode, this pin has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress. During configuration, or when reserved as DONE in user mode, this pin has an active pull-up.
MCLK/CCLK I/O		Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SN	I	Slave SPI active low chip select input.
CSSPIN	I/O	Master SPI active low chip select output.
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.
SCL	I/O	Slave I ² C clock input and master I ² C clock output.
SDA	I/O	Slave I ² C data input and master I ² C data output.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HC-4TG144C	6864	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-5TG144C	6864	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-6TG144C	6864	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-4BG256C	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-5BG256C	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-6BG256C	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-4FTG256C	6864	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-5FTG256C	6864	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-6FTG256C	6864	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-4BG332C	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-5BG332C	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-6BG332C	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-4FG400C	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-5FG400C	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-6FG400C	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-4FG484C	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-7000HC-5FG484C	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-7000HC-6FG484C	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100CR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-5TG100CR11	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-6TG100CR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-4MG132CR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-5MG132CR11	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-6MG132CR11	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-4TG144CR1 ¹	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-5TG144CR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-6TG144CR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM

1. Specifications for the "LCMXO2-1200HC-speed package CR1" are the same as the "LCMXO2-1200HC-speed package C" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Date	Version	Section	Change Summary
December 2014	2.9	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
		DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for V_{CC} and V_{CCIO}
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Volt- age Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014	2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.
			Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.
		Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE- 1UWG49ITR part number package.
		Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1, 2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated foot- note.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.