

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	104
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000he-5mg132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO2 Family Data Sheet Introduction

May 2016

Features

- Flexible Logic Architecture
 - Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
- Ultra Low Power Devices
 - Advanced 65 nm low power process
 - As low as 22 μ W standby power
 - Programmable low swing differential I/Os
 - · Stand-by mode and other power saving options

Embedded and Distributed Memory

- Up to 240 kbits sysMEM™ Embedded Block RAM
- Up to 54 kbits Distributed RAM
- Dedicated FIFO control logic
- On-Chip User Flash Memory
 - Up to 256 kbits of User Flash Memory
 - 100,000 write cycles
 - Accessible through WISHBONE, SPI, I²C and JTAG interfaces
 - Can be used as soft processor PROM or as Flash memory

Pre-Engineered Source Synchronous I/O

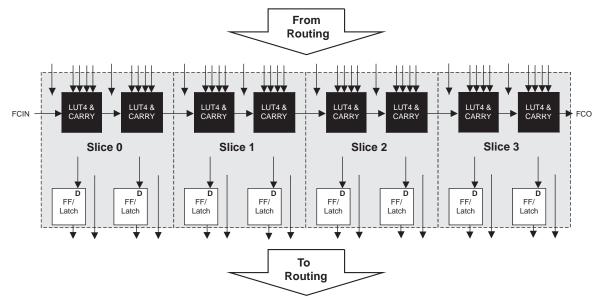
- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRX2, DDRX4
- Dedicated DDR/DDR2/LPDDR memory with DQS support

■ High Performance, Flexible I/O Buffer

- Programmable syslO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL
 - SSTL 25/18
 - HSTL 18
 - Schmitt trigger inputs, up to 0.5 V hysteresis
- I/Os support hot socketing
- On-chip differential termination
- · Programmable pull-up or pull-down mode

- Flexible On-Chip Clocking
 - · Eight primary clocks
 - Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
 - Up to two analog PLLs per device with fractional-n frequency synthesis
 - Wide input frequency range (7 MHz to 400 MHz)

Data Sheet DS1035


- Non-volatile, Infinitely Reconfigurable
 - Instant-on powers up in microseconds
 - Single-chip, secure solution
 - Programmable through JTAG, SPI or I²C
 - Supports background programming of non-volatile memory
 - Optional dual boot with external SPI memory
- TransFR[™] Reconfiguration
 - In-field logic update while system operates

Enhanced System Level Support

- On-chip hardened functions: SPI, I²C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- One Time Programmable (OTP) mode
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming
- Broad Range of Package Options
 - TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options
 - Small footprint package options
 As small as 2.5 mm x 2.5 mm
 - · Density migration supported
 - Advanced halogen-free packaging

Figure 2-3. PFU Block Diagram

Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

	PFU Block					
Slice	Resources	Modes				
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM				
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM				

Table 2-1. Resources and Modes Available per Slice

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Routing

There are many resources provided in the MachXO2 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each MachXO2 device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO2 architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO2-640U, MachXO2-1200/U and higher density devices have two edge clocks each on the top and bottom edges. Lower density devices have no edge clocks. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.

The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO2 devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

The maximum frequency for the primary clock network is shown in the MachXO2 External Switching Characteristics table.

The primary clock signals for the MachXO2-256 and MachXO2-640 are generated from eight 17:1 muxes The available clock sources include eight I/O sources and 9 routing inputs. Primary clock signals for the MachXO2-640U, MachXO2-1200/U and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sysCLOCK PLL outputs.

PIO

The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

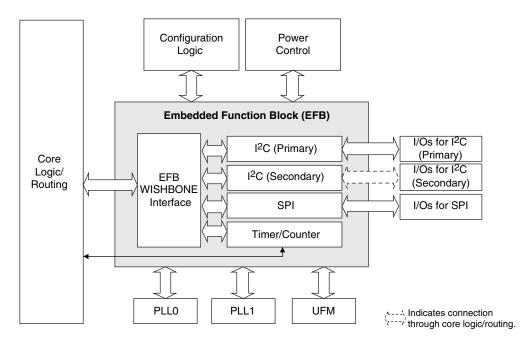
Table 2-8	. PIO	Signal	List
-----------	-------	--------	------

Pin Name	I/О Туре	Description
CE	Input	Clock Enable
D	Input	Pin input from sysIO buffer.
INDD	Output	Register bypassed input.
INCK	Output	Clock input
Q0	Output	DDR positive edge input
Q1	Output	Registered input/DDR negative edge input
D0	Input	Output signal from the core (SDR and DDR)
D1	Input	Output signal from the core (DDR)
TD	Input	Tri-state signal from the core
Q	Output	Data output signals to sysIO Buffer
TQ	Output	Tri-state output signals to sysIO Buffer
DQSR90 ¹	Input	DQS shift 90-degree read clock
DQSW90 ¹	Input	DQS shift 90-degree write clock
DDRCLKPOL ¹	Input	DDR input register polarity control signal from DQS
SCLK	Input	System clock for input and output/tri-state blocks.
RST	Input	Local set reset signal

1. Available in PIO on right edge only.

Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition to this functionality, the input register blocks for the PIOs on the right edge include built-in logic to interface to DDR memory.


Figure 2-12 shows the input register block for the PIOs located on the left, top and bottom edges. Figure 2-13 shows the input register block for the PIOs on the right edge.

Left, Top, Bottom Edges

Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

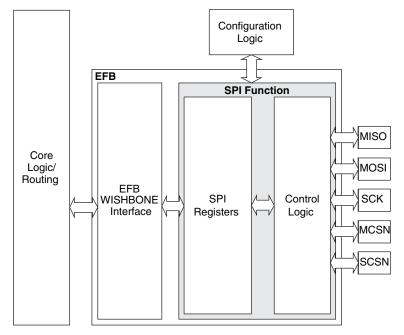


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description
spi_csn[0]	0	Master	SPI master chip-select output
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)
spi_scsn	I	Slave	SPI slave chip-select input
spi_irq	0	Master/Slave	Interrupt request
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
	Core Power Supply	LCMXO2-1200ZE	15	mA
ICC	Core Fower Supply	LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
ICCIO	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. TJ = 25 °C, power supplies at nominal voltage.

6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

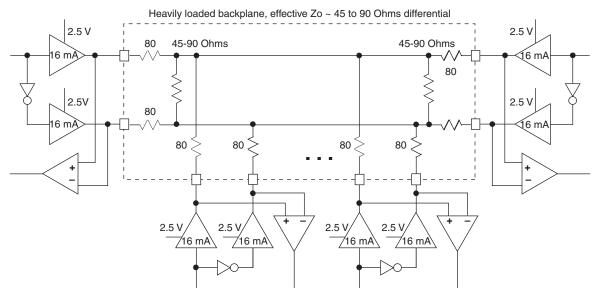
sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)				
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.			
LVCMOS 3.3	3.135	3.3	3.6	—	—	—			
LVCMOS 2.5	2.375	2.5	2.625	—	—	—			
LVCMOS 1.8	1.71	1.8	1.89	—	—	—			
LVCMOS 1.5	1.425	1.5	1.575	—	—	—			
LVCMOS 1.2	1.14	1.2	1.26	—	—	_			
LVTTL	3.135	3.3	3.6	—	—	—			
PCI ³	3.135	3.3	3.6	—	—	—			
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35			
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969			
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08			
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4			
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05			
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05			
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9			
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9			
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75			
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75			
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65			
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65			
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_			
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—			
LVPECL ¹	3.135	3.3	3.6	—	—	—			
BLVDS ¹	2.375	2.5	2.625	—	—	—			
RSDS ¹	2.375	2.5	2.625	—	—	—			
SSTL18D	1.71	1.8	1.89	—	—	—			
SSTL25D	2.375	2.5	2.625	—	—				
HSTL18D	1.71	1.8	1.89	—	—	—			

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.

3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.


4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

BLVDS

The MachXO2 family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

		Non	Nominal			
Symbol	Description	Zo = 45	Zo = 90	Units		
Z _{OUT}	Output impedance	20	20	Ohms		
R _S	Driver series resistance	80	80	Ohms		
R _{TLEFT}	Left end termination	45	90	Ohms		
R _{TRIGHT}	Right end termination	45	90	Ohms		
V _{OH}	Output high voltage	1.376	1.480	V		
V _{OL}	Output low voltage	1.124	1.020	V		
V _{OD}	Output differential voltage	0.253	0.459	V		
V _{CM}	Output common mode voltage	1.250	1.250	V		
I _{DC}	DC output current	11.236	10.204	mA		

1. For input buffer, see LVDS table.

MachXO2 External Switching Characteristics – HC/HE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	6	-5		-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Clo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	388		323	_	269	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	0.5	_	0.6	_	0.7	_	ns
		MachXO2-256HC-HE		912		939	—	975	ps
		MachXO2-640HC-HE		844		871	—	908	ps
	Primary Clock Skew Within a	MachXO2-1200HC-HE		868		902	—	951	ps
t _{SKEW_PRI}	Device	MachXO2-2000HC-HE		867		897	—	941	ps
		MachXO2-4000HC-HE		865		892	—	931	ps
		MachXO2-7000HC-HE		902		942	—	989	ps
Edge Clock									1
f _{MAX_EDGE} ⁸	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	400	_	333	_	278	MHz
Pin-LUT-Pin	Propagation Delay	I			1				
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	6.72	_	6.96	_	7.24	ns
General I/O	Pin Parameters (Using Primary	y Clock without PLL)			1				
		MachXO2-256HC-HE		7.13		7.30		7.57	ns
		MachXO2-640HC-HE		7.15		7.30	—	7.57	ns
	Clock to Output – PIO Output	MachXO2-1200HC-HE		7.44		7.64		7.94	ns
t _{co}	Register	MachXO2-2000HC-HE		7.46		7.66		7.96	ns
		MachXO2-4000HC-HE		7.51		7.71	—	8.01	ns
		MachXO2-7000HC-HE		7.54		7.75		8.06	ns
		MachXO2-256HC-HE	-0.06		-0.06		-0.06		ns
		MachXO2-640HC-HE	-0.06		-0.06	_	-0.06	_	ns
	Clock to Data Setup – PIO	MachXO2-1200HC-HE	-0.17		-0.17	_	-0.17	_	ns
t _{SU}	Input Register	MachXO2-2000HC-HE	-0.20		-0.20	_	-0.20	_	ns
		MachXO2-4000HC-HE	-0.23	_	-0.23	_	-0.23	_	ns
		MachXO2-7000HC-HE	-0.23	_	-0.23	_	-0.23	_	ns
		MachXO2-256HC-HE	1.75	—	1.95	—	2.16	—	ns
		MachXO2-640HC-HE	1.75	_	1.95	_	2.16	_	ns
	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	1.88	_	2.12	_	2.36	_	ns
t _H	Register	MachXO2-2000HC-HE	1.89	_	2.13	_	2.37	_	ns
		MachXO2-4000HC-HE	1.94		2.18		2.43	_	ns
		MachXO2-7000HC-HE	1.98	_	2.23	_	2.49	_	ns

Over Recommended Operating Conditions

			-6		-5		-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256HC-HE	1.42	—	1.59	—	1.96	—	ns
		MachXO2-640HC-HE	1.41	—	1.58	—	1.96	—	ns
•	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-1200HC-HE	1.63		1.79		2.17		ns
^t SU_DEL	Delay	MachXO2-2000HC-HE	1.61		1.76		2.13		ns
		MachXO2-4000HC-HE	1.66	—	1.81	—	2.19	—	ns
		MachXO2-7000HC-HE	1.53	—	1.67	—	2.03	—	ns
		MachXO2-256HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
		MachXO2-640HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
•	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	-0.24	—	-0.24	—	-0.24	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000HC-HE	-0.23	—	-0.23	—	-0.23	—	ns
		MachXO2-4000HC-HE	-0.25	—	-0.25	—	-0.25	—	ns
		MachXO2-7000HC-HE	-0.21	_	-0.21		-0.21	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	388	_	323	_	269	MHz
General I/O	Pin Parameters (Using Edge C	lock without PLL)		l		l			
		MachXO2-1200HC-HE	_	7.53	—	7.76		8.10	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE		7.53	—	7.76		8.10	ns
t _{COE}	Register	MachXO2-4000HC-HE		7.45	—	7.68		8.00	ns
		MachXO2-7000HC-HE	_	7.53	—	7.76		8.10	ns
		MachXO2-1200HC-HE	-0.19		-0.19	—	-0.19		ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	-0.19		-0.19		-0.19		ns
t _{SUE}	Input Register	MachXO2-4000HC-HE	-0.16		-0.16		-0.16		ns
		MachXO2-7000HC-HE	-0.19		-0.19		-0.19		ns
		MachXO2-1200HC-HE	1.97	_	2.24		2.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	1.97	_	2.24		2.52		ns
t _{HE}	Register	MachXO2-4000HC-HE	1.89		2.16	—	2.43		ns
		MachXO2-7000HC-HE	1.97		2.24	—	2.52		ns
		MachXO2-1200HC-HE	1.56		1.69	—	2.05		ns
	Clock to Data Setup - PIO	MachXO2-2000HC-HE	1.56		1.69	—	2.05		ns
t _{SU_DELE}	Input Register with Data Input Delay	MachXO2-4000HC-HE	1.74		1.88		2.25		ns
	Delay	MachXO2-7000HC-HE	1.66		1.81		2.17		ns
		MachXO2-1200HC-HE	-0.23		-0.23	—	-0.23		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.23		-0.23		-0.23		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000HC-HE	-0.34		-0.34		-0.34		ns
		MachXO2-7000HC-HE	-0.29		-0.29		-0.29		ns
General I/O	Pin Parameters (Using Primar								
		MachXO2-1200HC-HE	_	5.97	_	6.00	_	6.13	ns
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	5.98	_	6.01	_	6.14	ns
t _{COPLL}	Register	MachXO2-4000HC-HE	_	5.99	_	6.02	_	6.16	ns
		MachXO2-7000HC-HE	_	6.02	_	6.06	_	6.20	ns
		MachXO2-1200HC-HE	0.36	_	0.36	_	0.65	_	ns
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	0.36		0.36		0.63		ns
t _{SUPLL}	Input Register	MachXO2-4000HC-HE	0.35		0.35		0.62		ns
	_	MachXO2-7000HC-HE	0.34	_	0.34		0.59		ns
			0.01	l	0.01	l	0.00		

			-	-6	_	5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR	X2 Outputs with Clock and Data	Centered at Pin Using P	CLK Pin	for Cloc	k Input –	GDDRX	2_TX.EC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		0.535	_	0.670	_	0.830	_	ns
t _{DVA}	Output Data Valid After CLK Output	MachXO2-640U,	0.535	_	0.670	_	0.830	_	ns
f _{DATA}	DDRX2 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side only.		664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency (minimum limited by PLL)			332	_	277	_	231	MHz
f _{SCLK}	SCLK Frequency			166	—	139		116	MHz
Generic DDF	X4 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X4_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and		0.200	_	0.215	_	0.230	ns
f _{DATA}	DDRX4 Serial Output Data Speed	larger devices, top side only.		756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency		_	378	—	315	—	262	MHz
f _{SCLK}	SCLK Frequency		_	95	—	79		66	MHz
Generic DDF	X4 Outputs with Clock and Data	Centered at Pin Using Po	CLK Pin	for Cloc	k Input –	GDDRX	4_TX.EC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		0.455	_	0.570		0.710	_	ns
t _{DVA}	Output Data Valid After CLK Output	MachXO2-640U,	0.455	_	0.570		0.710	_	ns
f _{DATA}	DDRX4 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side only.		756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency (minimum limited by PLL)	ony.		378	_	315	_	262	MHz
f _{SCLK}	SCLK Frequency		_	95	—	79	—	66	MHz
7:1 LVDS Ou	utputs - GDDR71_TX.ECLK.7:1	9, 12							
t _{DIB}	Output Data Invalid Before CLK Output		_	0.160	_	0.180		0.200	ns
t _{DIA}	Output Data Invalid After CLK Output	MachXO2-640U,		0.160	_	0.180	_	0.200	ns
f _{DATA}	DDR71 Serial Output Data Speed	MachXO2-1200/U and larger devices, top side	_	756	_	630	_	524	Mbps
f _{DDR71}	DDR71 ECLK Frequency	only.	_	378	_	315	_	262	MHz
fclkout	7:1 Output Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz

MachXO2 Family Data Sheet Pinout Information

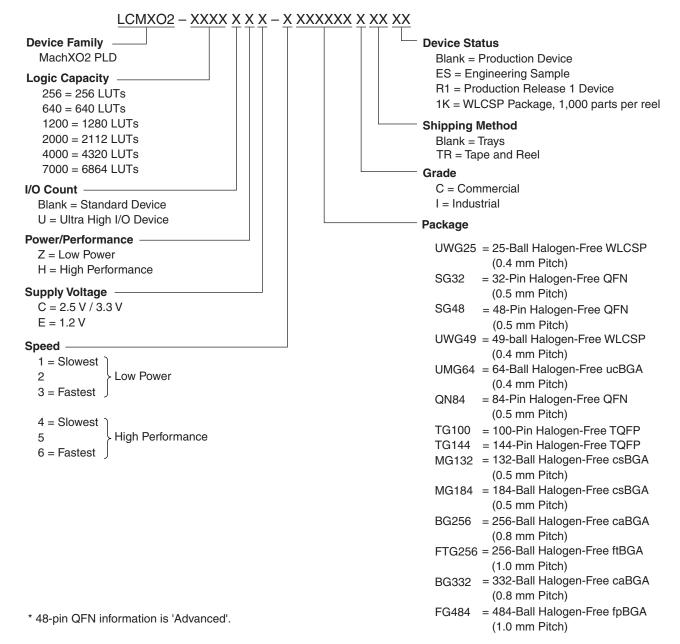
March 2017

Data Sheet DS1035

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	—	No connect.
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. For QFN 48 package, the exposed die pad is the device ground.
VCC	_	V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIOx	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]	—	Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual f	function pins used for test access port and during sysCONFIG™)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	I	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.
Configuration (Dual fu	nction p	ins used during sysCONFIG)
PROGRAMN	I	Initiates configuration sequence when asserted low. During configuration, or when reserved as PROGRAMN in user mode, this pin always has an active pull-up.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



MachXO2 Family Data Sheet Ordering Information

March 2017

Data Sheet DS1035

MachXO2 Part Number Description

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000ZE-1TG144C	6864	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-2TG144C	6864	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-3TG144C	6864	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-1BG256C	6864	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-2BG256C	6864	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-3BG256C	6864	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-1FTG256C	6864	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-2FTG256C	6864	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-3FTG256C	6864	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-1BG332C	6864	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-2BG332C	6864	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-3BG332C	6864	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-1FG484C	6864	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-2FG484C	6864	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-3FG484C	6864	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100CR11	1280	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-2TG100CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-3TG100CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-1MG132CR11	1280	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-2MG132CR1 ¹	1280	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-3MG132CR1 ¹	1280	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-1TG144CR1 ¹	1280	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-2TG144CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-3TG144CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	144	COM

1. Specifications for the "LCMXO2-1200ZE-speed package CR1" are the same as the "LCMXO2-1200ZE-speed package C" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-6BG332C	4320	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HE-4FG484C	4320	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-5FG484C	4320	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-6FG484C	4320	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HE-4TG144C	6864	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-5TG144C	6864	1.2 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-6TG144C	6864	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-4BG256C	6864	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-5BG256C	6864	1.2 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-6BG256C	6864	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-4FTG256C	6864	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-5FTG256C	6864	1.2 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-6FTG256C	6864	1.2 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-4BG332C	6864	1.2 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-5BG332C	6864	1.2 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-6BG332C	6864	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-4FG484C	6864	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-5FG484C	6864	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-6FG484C	6864	1.2 V	-6	Halogen-Free fpBGA	484	COM

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100IR11	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132IR1 ¹	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200HC-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100I	2112	1.2 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-5TG100I	2112	1.2 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-6TG100I	2112	1.2 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-4MG132I	2112	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-5MG132I	2112	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-6MG132I	2112	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-4TG144I	2112	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-5TG144I	2112	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-6TG144I	2112	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-4BG256I	2112	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-5BG256I	2112	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-6BG256I	2112	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-4FTG256I	2112	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-5FTG256I	2112	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-6FTG256I	2112	1.2 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484I	2112	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-5FG484I	2112	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-6FG484I	2112	1.2 V	-6	Halogen-Free fpBGA	484	IND

Date	Version	Section	Change Summary
May 2011	01.3	Multiple	Replaced "SED" with "SRAM CRC Error Detection" throughout the document.
		DC and Switching Characteristics	Added footnote 1 to Program Erase Specifications table.
		Pinout Information	Updated Pin Information Summary tables.
			Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table.
April 2011	01.2	_	Data sheet status changed from Advance to Preliminary.
		Introduction	Updated MachXO2 Family Selection Guide table.
		Architecture	Updated Supported Input Standards table.
			Updated sysMEM Memory Primitives diagram.
			Added differential SSTL and HSTL IO standards.
		DC and Switching Characteristics	Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current.
			Added VREF specifications to sysIO recommended operating condi- tions.
			Updating timing information based on characterization.
			Added differential SSTL and HSTL IO standards.
		Ordering Information	Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages.
			Added R1 device specifications.
January 2011	01.1	All	Included ultra-high I/O devices.
		DC and Switching Characteristics	Recommended Operating Conditions table – Added footnote 3.
			DC Electrical Characteristics table – Updated data for $\rm I_{IL}, I_{IH}, V_{HYST}$ typical values updated.
			Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Power-On-Reset Voltage Levels table - clarified note 3.
			Clarified VCCIO related recommended operating conditions specifications.
			Added power supply ramp rate requirements.
			Added Power Supply Ramp Rates table.
			Updated Programming/Erase Specifications table.
			Removed references to V _{CCP.}
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Removed references to V _{CCP.}
November 2010	01.0	—	Initial release.