
E · K Hatkice Semiconductor Corporation - LCMX02-2000HE-6TG144I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2 0 0 0 0	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	111
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000he-6tg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

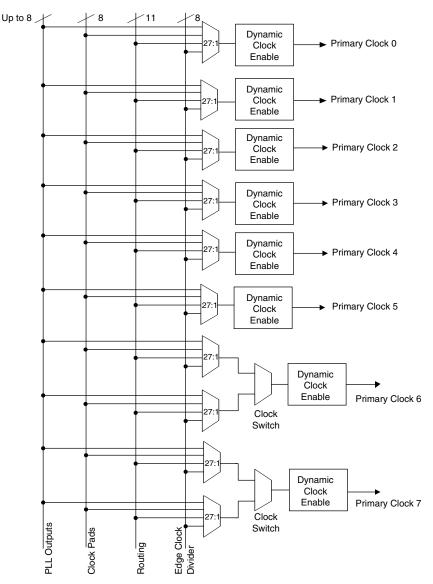
The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the MachXO2 family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found in MachXO2-640/U and larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage.

The MachXO2 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO2 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks on MachXO2-640U, MachXO2-1200/U and larger devices. These blocks are located at the ends of the on-chip Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

MachXO2 devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/ counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports.


Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO2 devices are available for operation from 3.3 V, 2.5 V and 1.2 V power supplies, providing easy integration into the overall system.

PFU Blocks

The core of the MachXO2 device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-5. Primary Clocks for MachXO2 Devices

Primary clocks for MachXO2-640U, MachXO2-1200/U and larger devices.

Note: MachXO2-640 and smaller devices do not have inputs from the Edge Clock Divider or PLL and fewer routing inputs. These devices have 17:1 muxes instead of 27:1 muxes.

Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO2 External Switching Characteristics table.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.

PIO

The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Table 2-8	. PIO	Signal	List
-----------	-------	--------	------

Pin Name	I/О Туре	Description
CE	Input	Clock Enable
D	Input	Pin input from sysIO buffer.
INDD	Output	Register bypassed input.
INCK	Output	Clock input
Q0	Output	DDR positive edge input
Q1	Output	Registered input/DDR negative edge input
D0	Input	Output signal from the core (SDR and DDR)
D1	Input	Output signal from the core (DDR)
TD	Input	Tri-state signal from the core
Q	Output	Data output signals to sysIO Buffer
TQ	Output	Tri-state output signals to sysIO Buffer
DQSR90 ¹	Input	DQS shift 90-degree read clock
DQSW90 ¹	Input	DQS shift 90-degree write clock
DDRCLKPOL ¹	Input	DDR input register polarity control signal from DQS
SCLK	Input	System clock for input and output/tri-state blocks.
RST	Input	Local set reset signal

1. Available in PIO on right edge only.

Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition to this functionality, the input register blocks for the PIOs on the right edge include built-in logic to interface to DDR memory.

Figure 2-12 shows the input register block for the PIOs located on the left, top and bottom edges. Figure 2-13 shows the input register block for the PIOs on the right edge.

Left, Top, Bottom Edges

Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams.

DDR Memory Support

Certain PICs on the right edge of MachXO2-640U, MachXO2-1200/U and larger devices, have additional circuitry to allow the implementation of DDR memory interfaces. There are two groups of 14 or 12 PIOs each on the right edge with additional circuitry to implement DDR memory interfaces. This capability allows the implementation of up to 16-bit wide memory interfaces. One PIO from each group contains a control element, the DQS Read/Write Block, to facilitate the generation of clock and control signals (DQSR90, DQSW90, DDRCLKPOL and DATAVALID). These clock and control signals are distributed to the other PIO in the group through dedicated low skew routing.

DQS Read Write Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Read Write block provides the required clock alignment for DDR memory interfaces. DQSR90 and DQSW90 signals are generated by the DQS Read Write block from the DQS input.

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. The MachXO2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This circuit changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each read cycle for the correct clock polarity. Prior to the read operation in DDR memories, DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit in the DQS Read Write block detects the first DQS rising edge after the preamble state and generates the DDRCLKPOL signal. This signal is used to control the polarity of the clock to the synchronizing registers.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration signals (6-bit bus) from a DLL on the right edge of the device. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, SSTL, HSTL, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO2 devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) and referenced input buffers (SSTL and HSTL) are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} . In addition, each bank has a voltage reference, V_{REF} which allows the use of referenced input buffers independent of the bank V_{CCIO} .

MachXO2-256 and MachXO2-640 devices contain single-ended ratioed input buffers and single-ended output buffers with complementary outputs on all the I/O banks. Note that the single-ended input buffers on these devices do not contain PCI clamps. In addition to the single-ended I/O buffers these two devices also have differential and referenced input buffers on all I/Os. The I/Os are arranged in pairs, the two pads in the pair are described as "T" and "C", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Hot Socketing

The MachXO2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO2 ideal for many multiple power supply and hot-swap applications.

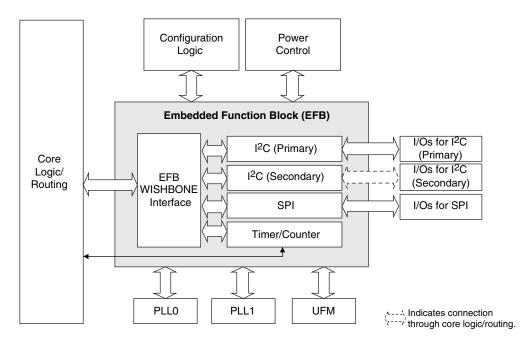
On-chip Oscillator

Every MachXO2 device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-14 lists all the available MCLK frequencies.

Table 2-14. Available MCLK Frequencies


MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

Embedded Hardened IP Functions and User Flash Memory

All MachXO2 devices provide embedded hardened functions such as SPI, I²C and Timer/Counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-20.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
1	Core Power Supply	LCMXO2-2000HC	4.80	mA
ICC		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Іссю	Bank Power Supply⁵ V _{CCIO} = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
I _{CC}		LCMXO2-2000HC	22.1	mA
	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. $T_J = 25$ °C, power supplies at nominal voltage.

6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
I _{CC}	Core Power Supply	LCMXO2-1200ZE	15	mA
	Core Fower Supply	LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
ICCIO	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. TJ = 25 °C, power supplies at nominal voltage.

6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OH} Min.	I _{OL} Max.⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	č(mA)	(mA)
LVCMOS10R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

MachXO2 devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO2 devices do not meet the relevant JEDEC specification are documented in the table below.

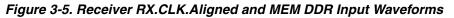
2. MachXO2 devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to TN1202, MachXO2 sysIO Usage Guide.

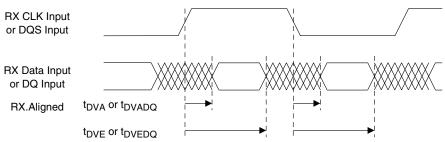
3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.

4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

Input Standard	V _{CCIO} (V)	V _{IL} Max. (V)
LVCMOS 33	1.5	0.685
LVCMOS 25	1.5	0.687
LVCMOS 18	1.5	0.655

sysIO Differential Electrical Characteristics


The LVDS differential output buffers are available on the top side of MachXO2-640U, MachXO2-1200/U and higher density devices in the MachXO2 PLD family.


LVDS

Over Recommended Operating Conditions

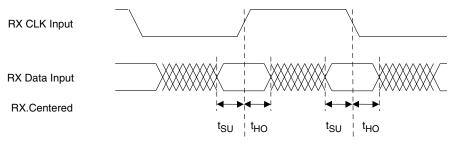

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V V	Input Voltage	V _{CCIO} = 3.3 V	0		2.605	V
V _{INP} V _{INM} Input Voltage	$V_{CCIO} = 2.5 V$	0	_	2.05	V	
V _{THD}	Differential Input Threshold		±100	_		mV
V.	Input Common Mode Voltage	V _{CCIO} = 3.3 V	0.05		2.6	V
V _{CM}	Input Common Mode Voltage	$V_{CCIO} = 2.5 V$	0.05		2.0	V
I _{IN}	Input current	Power on	_	_	±10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	_	1.375		V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.90	1.025		V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_		50	mV
V _{OS}	Output voltage offset	$(V_{OP} + V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.20	1.395	V
ΔV_{OS}	Change in V _{OS} between H and L		—	—	50	mV
I _{OSD}	Output short circuit current	$V_{OD} = 0 V$ driver outputs shorted	_		24	mA

Figure 3-6. Receiver RX.CLK.Centered Waveforms

Figure 3-7. Transmitter TX.CLK.Aligned Waveforms

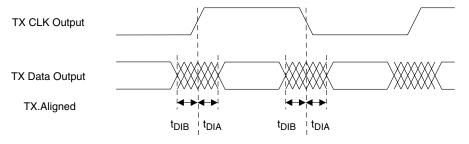
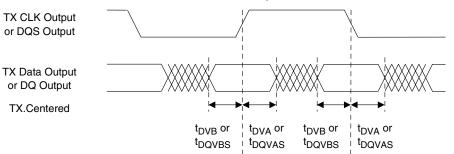



Figure 3-8. Transmitter TX.CLK.Centered and MEM DDR Output Waveforms

Figure 3-9. GDDR71 Video Timing Waveforms

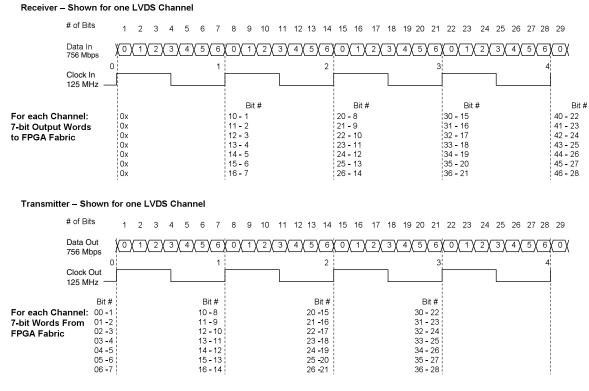


Figure 3-10. Receiver GDDR71_RX. Waveforms

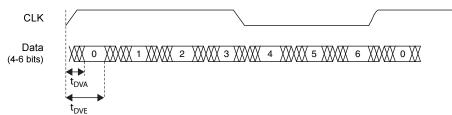
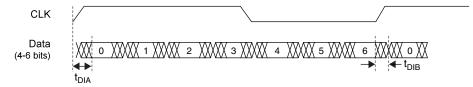



Figure 3-11. Transmitter GDDR71_TX. Waveforms

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000ZE-1TG144C	6864	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-2TG144C	6864	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-3TG144C	6864	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-1BG256C	6864	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-2BG256C	6864	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-3BG256C	6864	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-1FTG256C	6864	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-2FTG256C	6864	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-3FTG256C	6864	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-1BG332C	6864	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-2BG332C	6864	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-3BG332C	6864	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-1FG484C	6864	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-2FG484C	6864	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-3FG484C	6864	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100CR11	1280	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-2TG100CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-3TG100CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-1MG132CR11	1280	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-2MG132CR1 ¹	1280	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-3MG132CR1 ¹	1280	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-1TG144CR1 ¹	1280	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-2TG144CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-3TG144CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	144	COM

1. Specifications for the "LCMXO2-1200ZE-speed package CR1" are the same as the "LCMXO2-1200ZE-speed package C" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484C	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-5FG484C	2112	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-6FG484C	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84C	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	COM
LCMXO2-4000HC-5QN84C	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	COM
LCMXO2-4000HC-6QN84C	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	COM
LCMXO2-4000HC-4MG132C	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-5MG132C	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-6MG132C	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-4TG144C	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-5TG144C	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-6TG144C	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-4BG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-5BG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-6BG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-4FTG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-5FTG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-6FTG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-4BG332C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-5BG332C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-6BG332C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-4FG484C	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-5FG484C	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-6FG484C	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256ZE-1SG32I	256	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-256ZE-2SG32I	256	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-256ZE-3SG32I	256	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-256ZE-1UMG64I	256	1.2 V	-1	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-2UMG64I	256	1.2 V	-2	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-3UMG64I	256	1.2 V	-3	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-1TG100I	256	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-2TG100I	256	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-3TG100I	256	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-1MG132I	256	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-2MG132I	256	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-3MG132I	256	1.2 V	-3	Halogen-Free csBGA	132	IND
Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640ZE-1TG100I	640	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-2TG100I	640	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-3TG100I	640	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-1MG132I	640	1.2 V		Halogen-Free csBGA	132	IND
LCMXO2-640ZE-2MG132I	640	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-640ZE-3MG132I	640	1.2 V	-3	Halogen-Free csBGA	132	IND
	0.0					
Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1UWG25ITR1	1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR503	³ 1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR1K ²	² 1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1SG32I	1280	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-2SG32I	1280	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-3SG32I	1280	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-1TG100I	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100I	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100I	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132I 1280		1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132I 128		1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132I	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144I	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144I	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144I	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1UWG49ITR1	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR50 ³	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR1K ²	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1TG100I	2112	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-2TG100I	2112	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-3TG100I	2112	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-1MG132I	2112	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-2MG132I	2112	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-3MG132I	2112	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-1TG144I	2112	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-2TG144I	2112	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-3TG144I	2112	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-1BG256I	2112	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-2BG256I	2112	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-3BG256I	2112	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-1FTG256I	2112	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-2FTG256I	2112	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-3FTG256I	2112	1.2 V	-3	Halogen-Free ftBGA	256	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR11	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR11	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR11	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR11	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR11	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR11	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR11	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Date	Version	Section	Change Summary
December 2014	ecember 2014 2.9	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
		DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for V_{CC} and V_{CCIO}
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Volt- age Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014	ovember 2014 2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.
		Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.	
		Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE- 1UWG49ITR part number package.
		Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1, 2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated foot- note.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.