E ·) (Lattice Semiconductor Corporation - <u>LCMXO2-2000UHC-5FG484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	94208
Number of I/O	278
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000uhc-5fg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

MachXO2 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO2 devices, please see TN1201, Memory Usage Guide for MachXO2 Devices.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4	
Number of slices	3	3	
Note: SPB = Single Port BAM_PDPB = Pseudo Dual Port BAM			

ote: SPR = Single Port RAM, PDPR = Pseudo Dual

Figure 2-6. Secondary High Fanout Nets for MachXO2 Devices

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The MachXO2-640U, MachXO2-1200/U and larger devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO2 sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO2 clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.

This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

Table 2-4 provides signal descriptions of the PLL block.

Port Name	I/O	Description
CLKI	I	Input clock to PLL
CLKFB	I	Feedback clock
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports
PHASEDIR	I	Dynamic Phase adjustment direction
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-8. sysMEM Memory Primitives

Table 2-6. EBR Signal Descriptions

Port Name	Description	Active State
CLK	Clock	Rising Clock Edge
CE	Clock Enable	Active High
OCE ¹	Output Clock Enable	Active High
RST	Reset	Active High
BE ¹	Byte Enable	Active High
WE	Write Enable	Active High
AD	Address Bus	
DI	Data In	_
DO	Data Out	_
CS	Chip Select	Active High
AFF	FIFO RAM Almost Full Flag	_
FF	FIFO RAM Full Flag	_
AEF	FIFO RAM Almost Empty Flag	_
EF	FIFO RAM Empty Flag	_
RPRST	FIFO RAM Read Pointer Reset	_

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

5. In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port chip select, ORE is the output read enable.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.

Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-14 shows the output register block on the left, top and bottom edges.

Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Right Edge

The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges.

In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-15 shows the output register block on the right edge.

Figure 2-17. Output Gearbox

More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
I _{CC}	Core Power Supply	LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
		LCMXO2-1200ZE	15	mA
		LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. TJ = 25 °C, power supplies at nominal voltage.

6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

LVDS Emulation

MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	158	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Typical Building Block Function Performance – HC/HE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		·
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions	·	·
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions	·	·
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units
Basic Functions		
16-bit decoder	13.9	ns
4:1 MUX	10.9	ns
16:1 MUX	12.0	ns

Register-to-Register Performance

Function	–3 Timing	Units
Basic Functions		·
16:1 MUX	191	MHz
16-bit adder	134	MHz
16-bit counter	148	MHz
64-bit counter	77	MHz
Embedded Memory Functions	·	
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	90	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	214	MHz

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

			-3		-3 -2		-2 -1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256ZE	2.62	—	2.91		3.14		ns
		MachXO2-640ZE	2.56	—	2.85	—	3.08	—	ns
Clock to Data Setu	Clock to Data Setup – PIO	MachXO2-1200ZE	2.30	—	2.57	—	2.79	—	ns
^I SU_DEL	Delav	MachXO2-2000ZE	2.25	—	2.50		2.70		ns
		MachXO2-4000ZE	2.39		2.60		2.76		ns
		MachXO2-7000ZE	2.17	—	2.33		2.43		ns
		MachXO2-256ZE	-0.44	—	-0.44		-0.44		ns
		MachXO2-640ZE	-0.43	—	-0.43		-0.43		ns
	Clock to Data Hold – PIO Input	MachXO2-1200ZE	-0.28	—	-0.28		-0.28		ns
^t H_DEL	Register with Input Data Delay	MachXO2-2000ZE	-0.31		-0.31		-0.31		ns
		MachXO2-4000ZE	-0.34		-0.34		-0.34		ns
		MachXO2-7000ZE	-0.21		-0.21		-0.21		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	150	_	125	_	104	MHz
General I/O F	Pin Parameters (Using Edge Cl	ock without PLL)							
		MachXO2-1200ZE		11.10	_	11.51		11.91	ns
	Clock to Output – PIO Output	MachXO2-2000ZE		11.10	_	11.51		11.91	ns
^t COE	Register	MachXO2-4000ZE		10.89	_	11.28		11.67	ns
		MachXO2-7000ZE		11.10	_	11.51		11.91	ns
t _{SUE} Clock to Data Setup – F		MachXO2-1200ZE	-0.23		-0.23		-0.23		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	-0.23	—	-0.23		-0.23		ns
	Input Register	MachXO2-4000ZE	-0.15	_	-0.15		-0.15		ns
		MachXO2-7000ZE	-0.23	_	-0.23		-0.23		ns
		MachXO2-1200ZE	3.81	_	4.11		4.52		ns
	Clock to Data Hold – PIO Input Register	MachXO2-2000ZE	3.81	_	4.11		4.52		ns
t _{HE}		MachXO2-4000ZE	3.60	_	3.89		4.28		ns
		MachXO2-7000ZE	3.81	—	4.11		4.52		ns
		MachXO2-1200ZE	2.78	_	3.11		3.40		ns
_	Clock to Data Setup - PIO	MachXO2-2000ZE	2.78	_	3.11		3.40		ns
t _{SU_DELE}	Input Register with Data Input	MachXO2-4000ZE	3.11	_	3.48		3.79		ns
	Delay	MachXO2-7000ZE	2.94		3.30		3.60		ns
		MachXO2-1200ZE	-0.29	_	-0.29		-0.29		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-0.29		-0.29		-0.29		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000ZE	-0.46		-0.46		-0.46		ns
		MachXO2-7000ZE	-0.37	_	-0.37		-0.37		ns
General I/O Pin Parameters (Using Primary Clock with PLL)									
		MachXO2-1200ZE		7.95	_	8.07		8.19	ns
	Clock to Output – PIO Output	MachXO2-2000ZE	—	7.97		8.10		8.22	ns
	Register	MachXO2-4000ZE		7.98	—	8.10		8.23	ns
		MachXO2-7000ZE	—	8.02	_	8.14	—	8.26	ns
		MachXO2-1200ZE	0.85	_	0.85		0.89		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	0.84	_	0.84	_	0.86	_	ns
^I SUPLL	Input Register	MachXO2-4000ZE	0.84	_	0.84		0.85		ns
		MachXO2-7000ZE	0.83	—	0.83	—	0.81		ns

			_	-3		2	-1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}			1						
t _{DVADQ}	Input Data Valid After DQS Input			0.349	_	0.381	_	0.396	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.665	_	0.630		0.613	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25		0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	120	_	110	_	96	Mbps
f _{SCLK}	SCLK Frequency			60	—	55	_	48	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	120	0	110	0	96	Mbps
DDR ^{9, 12}	•	•							
t _{DVADQ}	Input Data Valid After DQS Input			0.347	_	0.374	_	0.393	UI
t _{DVEDQ}	Input Data Hold After DQS Input	-	0.665	_	0.637		0.616	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25		0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed			140		116		98	Mbps
f _{SCLK}	SCLK Frequency		—	70	—	58	—	49	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps
DDR2 ^{9, 12}		•							
t _{DVADQ}	Input Data Valid After DQS Input		_	0.372	_	0.394	_	0.410	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.690	_	0.658	_	0.618	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed	1	—	140	—	116	—	98	Mbps
f _{SCLK}	SCLK Frequency	1	—	70	—	58	—	49	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0 pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 167 ps (-3), 182 ps (-2), 195 ps (-1).

8. This number for general purpose usage. Duty cycle tolerance is +/-10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32-Pin QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

Figure 3-6. Receiver RX.CLK.Centered Waveforms

Figure 3-7. Transmitter TX.CLK.Aligned Waveforms

Figure 3-8. Transmitter TX.CLK.Centered and MEM DDR Output Waveforms

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-6BG332C	4320	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HE-4FG484C	4320	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-5FG484C	4320	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HE-6FG484C	4320	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HE-4TG144C	6864	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-5TG144C	6864	1.2 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-6TG144C	6864	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-7000HE-4BG256C	6864	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-5BG256C	6864	1.2 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-6BG256C	6864	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-7000HE-4FTG256C	6864	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-5FTG256C	6864	1.2 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-6FTG256C	6864	1.2 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-7000HE-4BG332C	6864	1.2 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-5BG332C	6864	1.2 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-6BG332C	6864	1.2 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-7000HE-4FG484C	6864	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-5FG484C	6864	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-7000HE-6FG484C	6864	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1UWG49ITR ¹	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR50 ³	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR1K ²	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1TG100I	2112	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-2TG100I	2112	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-3TG100I	2112	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-1MG132I	2112	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-2MG132I	2112	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-3MG132I	2112	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-1TG144I	2112	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-2TG144I	2112	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-3TG144I	2112	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-1BG256I	2112	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-2BG256I	2112	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-3BG256I	2112	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-1FTG256I	2112	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-2FTG256I	2112	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-3FTG256I	2112	1.2 V	-3	Halogen-Free ftBGA	256	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

Date	Version	Section	Change Summary
December 2014	2.9	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
		DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for V_{CC} and V_{CCIO}
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Volt- age Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014	2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.
			Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.
		Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE- 1UWG49ITR part number package.
		Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1, 2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated foot- note.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.

Date	Version	Section	Change Summary
February 2012	01.7	All	Updated document with new corporate logo.
	01.6	—	Data sheet status changed from preliminary to final.
		Introduction	MachXO2 Family Selection Guide table – Removed references to 49-ball WLCSP.
		DC and Switching Characteristics	Updated Flash Download Time table.
			Modified Storage Temperature in the Absolute Maximum Ratings section.
			Updated I _{DK} max in Hot Socket Specifications table.
			Modified Static Supply Current tables for ZE and HC/HE devices.
			Updated Power Supply Ramp Rates table.
			Updated Programming and Erase Supply Current tables.
			Updated data in the External Switching Characteristics table.
			Corrected Absolute Maximum Ratings for Dedicated Input Voltage Applied for LCMXO2 HC.
			DC Electrical Characteristics table – Minor corrections to conditions for $\mathbf{I}_{IL}, \mathbf{I}_{IH.}$
		Pinout Information	Removed references to 49-ball WLCSP.
			Signal Descriptions table – Updated description for GND, VCC, and VCCIOx.
			Updated Pin Information Summary table – Number of VCCIOs, GNDs, VCCs, and Total Count of Bonded Pins for MachXO2-256, 640, and 640U and Dual Function I/O for MachXO2-4000 332caBGA.
		Ordering Information	Removed references to 49-ball WLCSP
August 2011	01.5	DC and Switching Characteristics	Updated ESD information.
		Ordering Information	Updated footnote for ordering WLCSP devices.
	01.4	Architecture	Updated information in Clock/Control Distribution Network and sys- CLOCK Phase Locked Loops (PLLs).
		DC and Switching Characteristics	Updated ${\rm I}_{\rm IL}$ and ${\rm I}_{\rm IH}$ conditions in the DC Electrical Characteristics table.
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Updated Pin Information Summary table: Dual Function I/O, DQS Groups Bank 1, Total General Purpose Single-Ended I/O, Differential I/O Per Bank, Total Count of Bonded Pins, Gearboxes.
			Added column of data for MachXO2-2000 49 WLCSP.
		Ordering Information	Updated R1 Device Specifications text section with information on migration from MachXO2-1200-R1 to Standard (non-R1) devices.
			Corrected Supply Voltage typo for part numbers: LCMX02-2000UHE- 4FG484I, LCMX02-2000UHE-5FG484I, LCMX02-2000UHE- 6FG484I.
			Added footnote for WLCSP package parts.
		Supplemental Information	Removed reference to Stand-alone Power Calculator for MachXO2 Devices. Added reference to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices.