E. K Fattice Semiconductor Corporation - LCMX02-2000ZE-1TG100I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	264
Number of Logic Elements/Cells	2112
Total RAM Bits	75776
Number of I/O	79
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-2000ze-1tg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO2™ Family Selection Guide

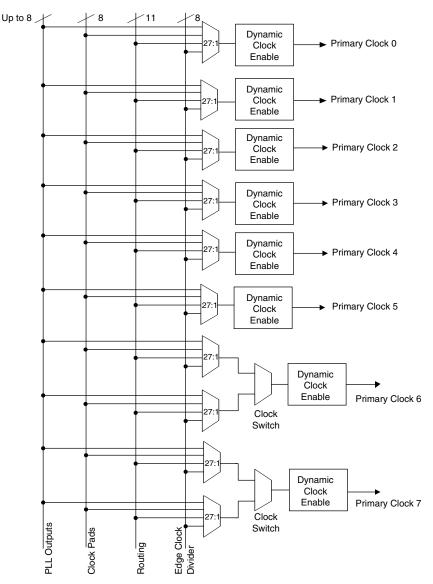
LUTs			XO2-640	XO2-640U ¹	702-1200	702-12000	702-2000	702-20000	XU2-4000	XO2-7000
2010		256	640	640	1280	1280	2112	2112	4320	6864
Distributed RAM (kbits)		2	5	5	10	10	16	16	34	54
EBR SRAM (kbits)		0	18	64	64	74	74	92	92	240
Number of EBR SRA kbits/block)	M Blocks (9	0	2	7	7	8	8	10	10	26
UFM (kbits)		0	24	64	64	80	80	96	96	256
Device Options:	HC ²	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	HE ³						Yes	Yes	Yes	Yes
	ZE ⁴	Yes	Yes		Yes		Yes		Yes	Yes
Number of PLLs		0	0	1	1	1	1	2	2	2
Hardened	I2C	2	2	2	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1	1	1	1
	Timer/Coun- ter	1	1	1	1	1	1	1	1	1
Packages						ю				
25-ball WLCSP⁵ (2.5 mm x 2.5 mm, 0	.4 mm)				18					
32 QFN ⁶ (5 mm x 5 mm, 0.5 mm)		21			21					
48 QFN ^{8, 9} (7 mm x 7 mm, 0.5 mm)		40	40							
49-ball WLCSP⁵ (3.2 mm x 3.2 mm, 0.4 mm)							38			
64-ball ucBGA (4 mm x 4 mm, 0.4 m	וm)	44								
84 QFN ⁷ (7 mm x 7 mm, 0.5 m	וm)								68	
100-pin TQFP (14 mm x 14 mm)		55	78		79		79			
132-ball csBGA (8 mm x 8 mm, 0.5 m	וm)	55	79		104		104		104	
144-pin TQFP (20 mm x 20 mm)				107	107		111		114	114
184-ball csBGA ⁷ (8 mm x 8 mm, 0.5 mm)									150	
256-ball caBGA (14 mm x 14 mm, 0.8 mm)							206		206	206
256-ball ftBGA (17 mm x 17 mm, 1.0 mm)						206	206		206	206
332-ball caBGA (17 mm x 17 mm, 0.8 mm)									274	278
484-ball ftBGA (23 mm x 23 mm, 1.0) mm)							278	278	334

1. Ultra high I/O device.

2. High performance with regulator – VCC = 2.5 V, 3.3 V

3. High performance without regulator $-V_{CC} = 1.2 V$ 4. Low power without regulator $-V_{CC} = 1.2 V$ 5. WLCSP package only available for ZE devices.

6. 32 QFN package only available for HC and ZE devices.


7. 184 csBGA package only available for HE devices.

8. 48-pin QFN information is 'Advanced'.

9. 48 QFN package only available for HC devices.

Figure 2-5. Primary Clocks for MachXO2 Devices

Primary clocks for MachXO2-640U, MachXO2-1200/U and larger devices.

Note: MachXO2-640 and smaller devices do not have inputs from the Edge Clock Divider or PLL and fewer routing inputs. These devices have 17:1 muxes instead of 27:1 muxes.

Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO2 External Switching Characteristics table.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

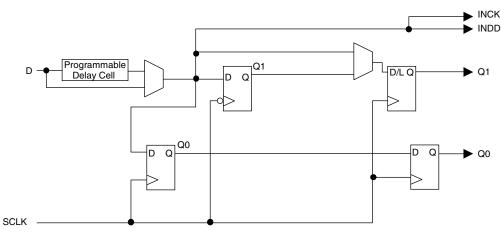
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

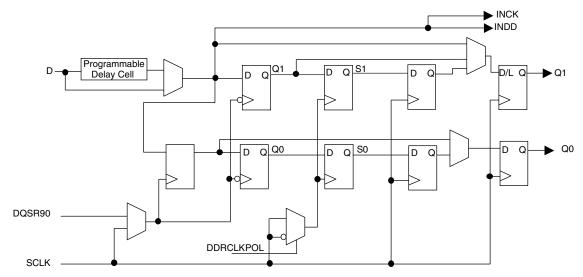
Memory Cascading


Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

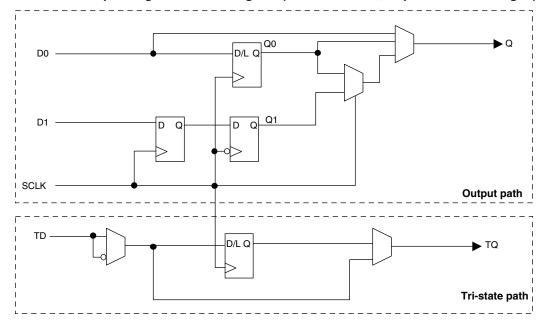
In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-14 shows the output register block on the left, top and bottom edges.

Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Right Edge

The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges.

In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-15 shows the output register block on the right edge.

For more details on these embedded functions, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

User Flash Memory (UFM)

MachXO2-640/U and higher density devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I²C and SPI interfaces of the device. The UFM block offers the following features:

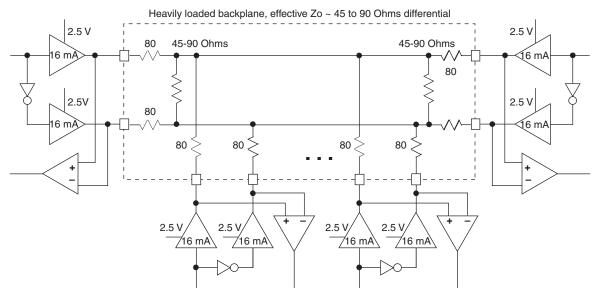
- Non-volatile storage up to 256 kbits
- 100K write cycles
- Write access is performed page-wise; each page has 128 bits (16 bytes)
- Auto-increment addressing
- WISHBONE interface

For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

Standby Mode and Power Saving Options

MachXO2 devices are available in three options for maximum flexibility: ZE, HC and HE devices. The ZE devices have ultra low static and dynamic power consumption. These devices use a 1.2 V core voltage that further reduces power consumption. The HC and HE devices are designed to provide high performance. The HC devices have a built-in voltage regulator to allow for 2.5 V V_{CC} and 3.3 V V_{CC} while the HE devices operate at 1.2 V V_{CC}.

MachXO2 devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO2 devices support an ultra low power Stand-by mode. While most of these features are available in all three device types, these features are mainly intended for use with MachXO2 ZE devices to manage power consumption.


In the stand-by mode the MachXO2 devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I²C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned "off" or go into a low power consumption state to save power when the device enters this state. Note that the MachXO2 devices are powered on when in standby mode and all power supplies should remain in the Recommended Operating Conditions.

BLVDS

The MachXO2 family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

		Nominal			
Symbol	Description	Zo = 45	Zo = 90	Units	
Z _{OUT}	Output impedance	20	20	Ohms	
R _S	Driver series resistance	80	80	Ohms	
R _{TLEFT}	Left end termination	45	90	Ohms	
R _{TRIGHT}	Right end termination	45	90	Ohms	
V _{OH}	Output high voltage	1.376	1.480	V	
V _{OL}	Output low voltage	1.124	1.020	V	
V _{OD}	Output differential voltage	0.253	0.459	V	
V _{CM}	Output common mode voltage	1.250	1.250	V	
I _{DC}	DC output current	11.236	10.204	mA	

1. For input buffer, see LVDS table.

			-	-6	-	-5	-	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDI	R4 Inputs with Clock and Data A	Aligned at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	(4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		—	0.290	—	0.320	—	0.345	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.739	—	0.699	—	0.703	—	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756		630	—	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378		315	—	262	MHz
f _{SCLK}	SCLK Frequency			95		79	—	66	MHz
	4 Inputs with Clock and Data C	entered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	4_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	0.198	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.287	—	0.287	—	0.344		ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378	—	315	—	262	MHz
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz
7:1 LVDS In	puts (GDDR71_RX.ECLK.7:1) ^{9,}	12							
t _{DVA}	Input Data Valid After ECLK			0.290		0.320	—	0.345	UI
t _{DVE}	Input Data Hold After ECLK		0.739	—	0.699		0.703		UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U and	_	756	_	630	_	524	Mbps
f _{DDR71}	DDR71 ECLK Frequency	larger devices, bottom side only. ¹¹		378	—	315	—	262	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)	side only.	_	108	_	90	_	75	MHz
Generic DD	R Outputs with Clock and Data	Aligned at Pin Using PC	LK Pin f	for Clock	< Input –	GDDR	(1_TX.S	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.520	_	0.550	_	0.580	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides.	_	0.520	_	0.550	—	0.580	ns
f _{DATA}	DDRX1 Output Data Speed			300	_	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK frequency	-		150	—	125	—	104	MHz
	R Outputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		1.210	_	1.510	_	1.870	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2 devices,	1.210	—	1.510	_	1.870	_	ns
f _{DATA}	DDRX1 Output Data Speed	all sides.		300	_	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	•	_	150	_	125	_	104	MHz
Generic DDF	X2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input -	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and	_	0.200	_	0.215	—	0.230	ns
f _{DATA}	DDRX2 Serial Output Data Speed	larger devices, top side only.	_	664	_	554	—	462	Mbps
f _{DDRX2}	DDRX2 ECLK frequency			332	_	277	—	231	MHz
f _{SCLK}	SCLK Frequency]		166	_	139	—	116	MHz

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

MAX_PRI Tree	Description	Device All MachXO2 devices	Min.	Max.	Min.	Max.	Min.	Max.	Units
Frimary Clocks f _{MAX_PRI} [®] Frequer Tree turner Clock P		All MachXO2 devices							
f _{MAX_PRI} ⁸ Frequer Tree Clock P		All MachXO2 devices							
Tree Clock P		All MachXO2 devices							
	ulse Width for Primary		_	150	_	125	_	104	MHz
		All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	_	1250	_	1272	_	1296	ps
		MachXO2-640ZE		1161	_	1183	_	1206	ps
. Primarv	Clock Skew Within a	MachXO2-1200ZE	_	1213	_	1267	_	1322	ps
t _{SKEW_PRI} Device		MachXO2-2000ZE	_	1204	_	1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	_	1269	ps
		MachXO2-7000ZE	_	1243	_	1268	—	1296	ps
Edge Clock		1	I	L		L		L	
f _{MAX_EDGE⁸ Frequer}	ncy for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin Propaga	tion Delay								
t _{PD} Best ca through	se propagation delay one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O Pin Parar	meters (Using Primary	Clock without PLL)							
		MachXO2-256ZE		10.46		10.86		11.25	ns
		MachXO2-640ZE		10.52		10.92		11.32	ns
L Clock to	o Output – PIO Output	MachXO2-1200ZE	_	11.24	_	11.68	_	12.12	ns
t _{CO} Registe		MachXO2-2000ZE	_	11.27		11.71		12.16	ns
		MachXO2-4000ZE	_	11.28		11.78		12.28	ns
		MachXO2-7000ZE	_	11.22	_	11.76	_	12.30	ns
		MachXO2-256ZE	-0.21		-0.21		-0.21	_	ns
		MachXO2-640ZE	-0.22		-0.22		-0.22	_	ns
L Clock to	Data Setup – PIO	MachXO2-1200ZE	-0.25		-0.25		-0.25		ns
t _{SU} Input Re		MachXO2-2000ZE	-0.27		-0.27		-0.27		ns
		MachXO2-4000ZE	-0.31		-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33		-0.33		-0.33	_	ns
		MachXO2-256ZE	3.96	—	4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01	_	4.31	_	4.71	_	ns
Lock to	Data Hold – PIO Input	MachXO2-1200ZE	3.95	_	4.29	_	4.73	_	ns
t _H Registe		MachXO2-2000ZE	3.94	_	4.29	_	4.74	_	ns
		MachXO2-4000ZE	3.96	_	4.36	_	4.87	_	ns
		MachXO2-7000ZE	3.93	_	4.37		4.91	_	ns

Over Recommended Operating Conditions

Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
t _{REFRESH}		LCMXO2-256	0.6	ms
		LCMXO2-640	1.0	ms
		LCMXO2-640U	1.9	ms
		LCMXO2-1200	1.9	ms
	POR to Device I/O Active	LCMXO2-1200U	1.4	ms
		LCMXO2-2000	1.4	ms
		LCMXO2-2000U	2.4	ms
		LCMXO2-4000	2.4	ms
		LCMXO2-7000	3.8	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The Flash download time is measured starting from the maximum voltage of POR trip point.

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable		25	ns

I²C Port Timing Specifications^{1, 2}

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCL clock frequency	_	400	kHz

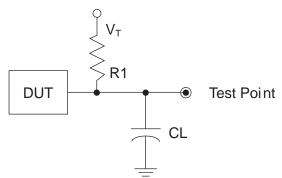
1. MachXO2 supports the following modes:

• Standard-mode (Sm), with a bit rate up to 100 kbit/s (user and configuration mode)

• Fast-mode (Fm), with a bit rate up to 400 kbit/s (user and configuration mode)

2. Refer to the I²C specification for timing requirements.

SPI Port Timing Specifications¹


Symbol	Parameter	Min.	Max.	Units
f _{MAX}	Maximum SCK clock frequency	_	45	MHz

1. Applies to user mode only. For configuration mode timing specifications, refer to sysCONFIG Port Timing Specifications table in this data sheet.

Switching Test Conditions

Figure 3-13 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

Table 3-5. Test Fixture Required Components	, Non-Terminated Interfaces
---	-----------------------------

Test Condition	R1	CL	Timing Ref.	VT			
			LVTTL, LVCMOS 3.3 = 1.5 V	—			
			LVCMOS 2.5 = $V_{CCIO}/2$	—			
LVTTL and LVCMOS settings (L -> H, H -> L)	∞	0pF	LVCMOS 1.8 = $V_{CCIO}/2$	—			
			LVCMOS 1.5 = $V_{CCIO}/2$				
			LVCMOS 1.2 = $V_{CCIO}/2$	—			
LVTTL and LVCMOS 3.3 (Z -> H)			1.5 V	V _{OL}			
LVTTL and LVCMOS 3.3 (Z -> L)	- - - 188		1.5 V	V _{OH}			
Other LVCMOS (Z -> H)		0pF	V _{CCIO} /2	V _{OL}			
Other LVCMOS (Z -> L)	100	opi	V _{CCIO} /2	V _{OH}			
LVTTL + LVCMOS (H -> Z)			V _{OH} – 0.15 V	V _{OL}			
LVTTL + LVCMOS (L -> Z)]		V _{OL} – 0.15 V	V _{OH}			

Note: Output test conditions for all other interfaces are determined by the respective standards.

MachXO2 Family Data Sheet Pinout Information

March 2017

Data Sheet DS1035

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	_	No connect.
GND		GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. For QFN 48 package, the exposed die pad is the device ground.
VCC		V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIOx		VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB		Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]		Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual 1	function pins used for test access port and during sysCONFIG™)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	Ι	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.
Configuration (Dual fu	nction p	ins used during sysCONFIG)
PROGRAMN	Ι	Initiates configuration sequence when asserted low. During configuration, or when reserved as PROGRAMN in user mode, this pin always has an active pull-up.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pinout Information Summary

		Ма	achXO2-2	256		MachXO2-640			MachXO2-640L	
	32 QFN ¹	48 QFN ³	64 ucBGA	100 TQFP	132 csBGA	48 QFN ³	100 TQFP	132 csBGA	144 TQFP	
General Purpose I/O per Bank								•	•	
Bank 0	8	10	9	13	13	10	18	19	27	
Bank 1	2	10	12	14	14	10	20	20	26	
Bank 2	9	10	11	14	14	10	20	20	28	
Bank 3	2	10	12	14	14	10	20	20	26	
Bank 4	0	0	0	0	0	0	0	0	0	
Bank 5	0	0	0	0	0	0	0	0	0	
Total General Purpose Single Ended I/O	21	40	44	55	55	40	78	79	107	
Differential I/O per Bank										
Bank 0	4	5	5	7	7	5	9	10	14	
Bank 1	1	5	6	7	7	5	10	10	13	
Bank 2	4	5	5	7	7	5	10	10	14	
Bank 3	1	5	6	7	7	5	10	10	13	
Bank 4	0	0	0	0	0	0	0	0	0	
Bank 5	0	0	0	0	0	0	0	0	0	
Total General Purpose Differential I/O	10	20	22	28	28	20	39	40	54	
Dual Function I/O	22	25	27	29	29	25	29	29	33	
High-speed Differential I/O		1						1		
Bank 0	0	0	0	0	0	0	0	0	7	
Gearboxes									•	
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	0	0	0	0	0	0	0	0	7	
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	0	0	0	0	0	0	0	0	7	
DQS Groups										
Bank 1	0	0	0	0	0	0	0	0	2	
VCCIO Pins										
Bank 0	2	2	2	2	2	2	2	2	3	
Bank 1	1	1	2	2	2	1	2	2	3	
Bank 2	2	2	2	2	2	2	2	2	3	
Bank 3	1	1	2	2	2	1	2	2	3	
Bank 4	0	0	0	0	0	0	0	0	0	
Bank 5	0	0	0	0	0	0	0	0	0	
VCC	2	2	2	2	2	2	2	2	4	
GND ²	2	1	8	8	8	1	8	10	12	
NC	0	0	1	26	58	0	3	32	8	
Reserved for Configuration	1	1	1	1	1	1	1	1	1	

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

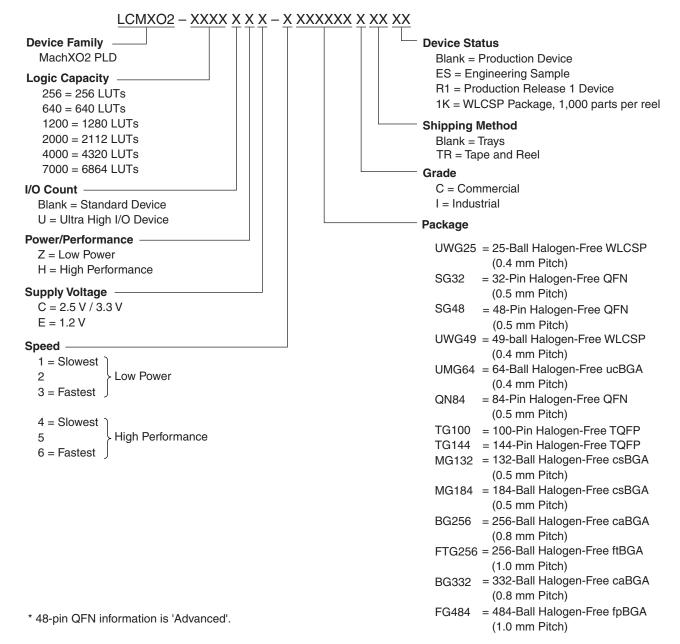
2. For 48 QFN package, exposed die pad is the device ground.

3. 48-pin QFN information is 'Advanced'.

		MachXO2-1200U				
	100 TQFP	132 csBGA	144 TQFP	25 WLCSP	32 QFN ¹	256 ftBGA
General Purpose I/O per Bank	•					
Bank 0	18	25	27	11	9	50
Bank 1	21	26	26	0	2	52
Bank 2	20	28	28	7	9	52
Bank 3	20	25	26	0	2	16
Bank 4	0	0	0	0	0	16
Bank 5	0	0	0	0	0	20
Total General Purpose Single Ended I/O	79	104	107	18	22	206
Differential I/O per Bank						
Bank 0	9	13	14	5	4	25
Bank 1	10	13	13	0	1	26
Bank 2	10	14	14	2	4	26
Bank 3	10	12	13	0	1	8
Bank 4	0	0	0	0	0	8
Bank 5	0	0	0	0	0	10
Total General Purpose Differential I/O	39	52	54	7	10	103
Dual Function I/O	31	33	33	18	22	33
High-speed Differential I/O						
Bank 0	4	7	7	0	0	14
Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	4	7	7	0	0	14
Number of 7:1 or 8:1 Input Gearbox Avail- able (Bank 2)	5	7	7	0	2	14
DQS Groups						
Bank 1	1	2	2	0	0	2
VCCIO Pins						
Bank 0	2	3	3	1	2	4
Bank 1	2	3	3	0	1	4
Bank 2	2	3	3	1	2	4
Bank 3	3	3	3	0	1	1
Bank 4	0	0	0	0	0	2
Bank 5	0	0	0	0	0	1
VCC	2	4	4	2	2	8
GND	8	10	12	2	2	24
NC	1	1	8	0	0	1
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	100	132	144	25	32	256
1. Lattice recommends soldering the centra						

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

	MachXO2-2000						MachXO2-2000U
	49 WLCSP	100 TQFP	132 csBGA	144 TQFP	256 caBGA	256 ftBGA	484 ftBGA
General Purpose I/O per Bank	•		•		•		
Bank 0	19	18	25	27	50	50	70
Bank 1	0	21	26	28	52	52	68
Bank 2	13	20	28	28	52	52	72
Bank 3	0	6	7	8	16	16	24
Bank 4	0	6	8	10	16	16	16
Bank 5	6	8	10	10	20	20	28
Total General Purpose Single-Ended I/O	38	79	104	111	206	206	278
Differential I/O per Bank							
Bank 0	7	9	13	14	25	25	35
Bank 1	0	10	13	14	26	26	34
Bank 2	6	10	14	14	26	26	36
Bank 3	0	3	3	4	8	8	12
Bank 4	0	3	4	5	8	8	8
Bank 5	3	4	5	5	10	10	14
Total General Purpose Differential I/O	16	39	52	56	103	103	139
Dual Function I/O	24	31	33	33	33	33	37
High-speed Differential I/O		-					_
Bank 0	5	4	8	9	14	14	18
Gearboxes	-		_	_			-
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	4	8	9	14	14	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	10	14	14	14	14	18
DQS Groups							
Bank 1	0	1	2	2	2	2	2
VCCIO Pins							
Bank 0	2	2	3	3	4	4	10
Bank 1	0	2	3	3	4	4	10
Bank 2	1	2	3	3	4	4	10
Bank 3	0	1	1	1	1	1	3
Bank 4	0	1	1	1	2	2	4
Bank 5	1	1	1	1	1	1	3
			1		1	r	T
VCC	2	2	4	4	8	8	12
GND	4	8	10	12	24	24	48
NC	0	1	1	4	1	1	105
Reserved for Configuration	1	1	1	1	v	1	1
Total Count of Bonded Pins	39	100	132	144	256	256	484



MachXO2 Family Data Sheet Ordering Information

March 2017

Data Sheet DS1035

MachXO2 Part Number Description

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Ordering Information

MachXO2 devices have top-side markings, for commercial and industrial grades, as shown below:

Notes:

- 1. Markings are abbreviated for small packages.
- 2. See PCN 05A-12 for information regarding a change to the top-side mark logo.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1UWG49ITR1	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR50 ³	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR1K ²	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1TG100I	2112	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-2TG100I	2112	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-3TG100I	2112	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-1MG132I	2112	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-2MG132I	2112	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-3MG132I	2112	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-1TG144I	2112	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-2TG144I	2112	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-3TG144I	2112	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-1BG256I	2112	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-2BG256I	2112	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-3BG256I	2112	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-1FTG256I	2112	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-2FTG256I	2112	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-3FTG256I	2112	1.2 V	-3	Halogen-Free ftBGA	256	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100IR11	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132IR1 ¹	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200HC-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

R1 Device Specifications

The LCMXO2-1200ZE/HC "R1" devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices.

- The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I²C ports.
- The on-chip differential input termination resistor value is higher than intended. It is approximately 200Ω as opposed to the intended 100Ω. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software.
- Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result.
- Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details:

Condition	Clamp	Pad Rising IIH Max.	Pad Falling IIH Min.	Steady State Pad High IIH	Steady State Pad Low IIL
VPAD > VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD = VCCIO	ON	10 µA	–10 μA	10 µA	10 µA
VPAD = VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD < VCCIO	OFF	10 µA	–10 μA	10 µA	10 µA

- The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt.
- In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization.
- When using the hard I²C IP core, the I²C status registers I2C_1_SR and I2C_2_SR may not update correctly.
- PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10 μsec before returning low.
- Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3 V or 2.5 V supply.