
E. Keniconductor Corporation - LCMX02-256HC-5SG32C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Active
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	21
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-256hc-5sg32c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. MachXO2™ Family Selection Guide

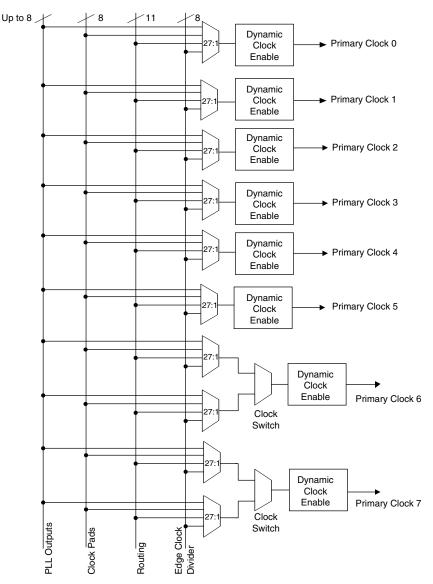
LUTs			XO2-640	XO2-640U ¹	702-1200	702-12000	702-2000	702-20000	XU2-4000	XO2-7000
2010		256	640	640	1280	1280	2112	2112	4320	6864
Distributed RAM (kbits)		2	5	5	10	10	16	16	34	54
EBR SRAM (kbits)		0	18	64	64	74	74	92	92	240
Number of EBR SRA kbits/block)	M Blocks (9	0	2	7	7	8	8	10	10	26
UFM (kbits)		0	24	64	64	80	80	96	96	256
Device Options:	HC ²	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	HE ³						Yes	Yes	Yes	Yes
	ZE ⁴	Yes	Yes		Yes		Yes		Yes	Yes
Number of PLLs		0	0	1	1	1	1	2	2	2
Hardened	12C	2	2	2	2	2	2	2	2	2
Functions:	SPI	1	1	1	1	1	1	1	1	1
	Timer/Coun- ter	1	1	1	1	1	1	1	1	1
Packages						ю				
25-ball WLCSP⁵ (2.5 mm x 2.5 mm, 0	.4 mm)				18					
32 QFN ⁶ (5 mm x 5 mm, 0.5 mm)		21			21					
48 QFN ^{8, 9} (7 mm x 7 mm, 0.5 mm)		40	40							
49-ball WLCSP⁵ (3.2 mm x 3.2 mm, 0.4 mm)							38			
64-ball ucBGA (4 mm x 4 mm, 0.4 m	וm)	44								
84 QFN ⁷ (7 mm x 7 mm, 0.5 m	וm)								68	
100-pin TQFP (14 mm x 14 mm)		55	78		79		79			
132-ball csBGA (8 mm x 8 mm, 0.5 m	וm)	55	79		104		104		104	
144-pin TQFP (20 mm x 20 mm)				107	107		111		114	114
184-ball csBGA ⁷ (8 mm x 8 mm, 0.5 m	וm)								150	
256-ball caBGA (14 mm x 14 mm, 0.8	3 mm)						206		206	206
256-ball ftBGA (17 mm x 17 mm, 1.0) mm)					206	206		206	206
332-ball caBGA (17 mm x 17 mm, 0.8 mm)									274	278
484-ball ftBGA (23 mm x 23 mm, 1.0) mm)							278	278	334

1. Ultra high I/O device.

2. High performance with regulator – VCC = 2.5 V, 3.3 V

3. High performance without regulator $-V_{CC} = 1.2 V$ 4. Low power without regulator $-V_{CC} = 1.2 V$ 5. WLCSP package only available for ZE devices.

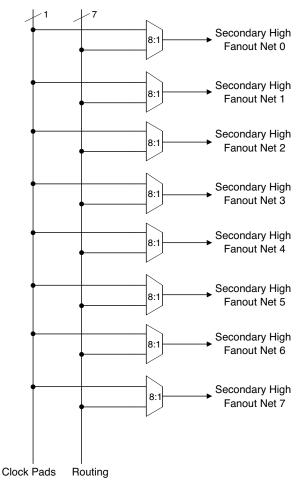
6. 32 QFN package only available for HC and ZE devices.


7. 184 csBGA package only available for HE devices.

8. 48-pin QFN information is 'Advanced'.

9. 48 QFN package only available for HC devices.

Figure 2-5. Primary Clocks for MachXO2 Devices


Primary clocks for MachXO2-640U, MachXO2-1200/U and larger devices.

Note: MachXO2-640 and smaller devices do not have inputs from the Edge Clock Divider or PLL and fewer routing inputs. These devices have 17:1 muxes instead of 27:1 muxes.

Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO2 External Switching Characteristics table.

Figure 2-6. Secondary High Fanout Nets for MachXO2 Devices

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The MachXO2-640U, MachXO2-1200/U and larger devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The MachXO2 sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The output dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO2 clock distribution network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

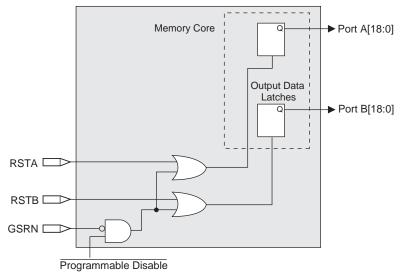
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading


Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

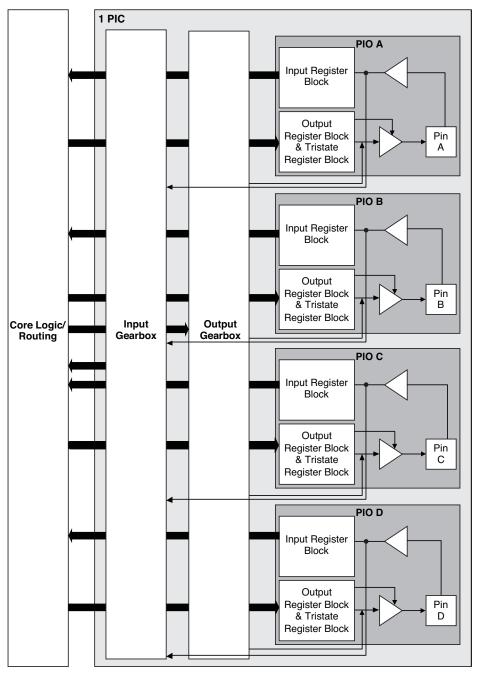
EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

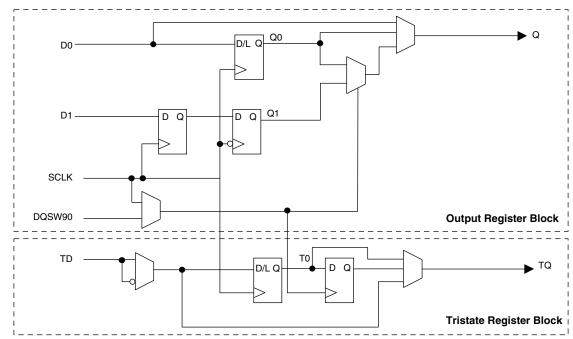
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.


If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Figure 2-11. Group of Four Programmable I/O Cells



Notes:

1. Input gearbox is available only in PIC on the bottom edge of MachXO2-640U, MachXO2-1200/U and larger devices. 2. Output gearbox is available only in PIC on the top edge of MachXO2-640U, MachXO2-1200/U and larger devices.

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

The tri-state register blocks on the right edge contain an additional register for DDR memory operation. In DDR memory mode, the register TS input is fed into another register that is clocked using the DQSW90 signal. The output of this register is used as a tri-state control.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

Table 2-11. I/O Support Device by Device

	MachXO2-256, MachXO2-640	MachXO2-640U, MachXO2-1200	MachXO2-1200U MachXO2-2000/U, MachXO2-4000, MachXO2-7000	
Number of I/O Banks	4	4	6	
		Single-ended (all I/O banks)	Single-ended (all I/O banks)	
Type of Input Buffers	Single-ended (all I/O banks) Differential Receivers (all I/O	Differential Receivers (all I/O banks)	Differential Receivers (all I/O banks)	
	banks)	Differential input termination (bottom side)	Differential input termination (bottom side)	
	Single-ended buffers with	Single-ended buffers with complementary outputs (all I/O banks)	Single-ended buffers with complementary outputs (all I/O banks)	
Types of Output Buffers	complementary outputs (all I/O banks)	Differential buffers with true LVDS outputs (50% on top side)	Differential buffers with true LVDS outputs (50% on top side)	
Differential Output Emulation Capability	All I/O banks	All I/O banks	All I/O banks	
PCI Clamp Support	No	Clamp on bottom side only	Clamp on bottom side only	

Table 2-12. Supported Input Standards

	VCCIO (Typ.)						
Input Standard	3.3 V	2.5 V	1.8 V	1.5	1.2 V		
Single-Ended Interfaces		•	•				
LVTTL	✓	√ ²	√ ²	√ ²			
LVCMOS33	✓	√ ²	√ ²	√ ²			
LVCMOS25	√ ²	✓	√ ²	√ ²			
LVCMOS18	√ ²	√ ²	✓	√ ²			
LVCMOS15	√ ²	√ ²	√ ²	~	√ ²		
LVCMOS12	√ ²	√ ²	√ ²	√ ²	✓		
PCI ¹	✓						
SSTL18 (Class I, Class II)	✓	✓	✓				
SSTL25 (Class I, Class II)	1	✓					
HSTL18 (Class I, Class II)	✓	✓	✓				
Differential Interfaces		•					
LVDS	✓	✓					
BLVDS, MVDS, LVPECL, RSDS	✓	✓					
MIPI ³	✓	✓					
Differential SSTL18 Class I, II	✓	✓	✓				
Differential SSTL25 Class I, II	✓	✓					
Differential HSTL18 Class I, II	✓	✓	✓				

1. Bottom banks of MachXO2-640U, MachXO2-1200/U and higher density devices only.

2. Reduced functionality. Refer to TN1202, MachXO2 sysIO Usage Guide for more detail.

3. These interfaces can be emulated with external resistors in all devices.

Hardened Timer/Counter

MachXO2 devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-23. Timer/Counter Block Diagram

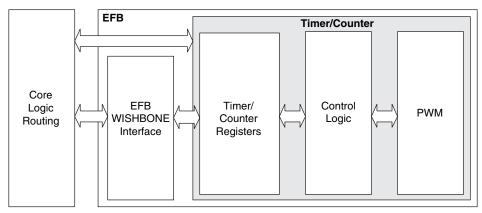


Table 2-17. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.6	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	_
LVTTL	3.135	3.3	3.6	—	—	—
PCI ³	3.135	3.3	3.6	—	—	—
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—
LVPECL ¹	3.135	3.3	3.6	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
RSDS ¹	2.375	2.5	2.625	—	—	—
SSTL18D	1.71	1.8	1.89	—	—	—
SSTL25D	2.375	2.5	2.625	—	—	
HSTL18D	1.71	1.8	1.89	—	—	—

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.

3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OH} Min.	I _{OL} Max.⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(۷)	(V)	ິ(mA)	(mA)
LVCMOS10R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain

MachXO2 devices allow LVCMOS inputs to be placed in I/O banks where V_{CCIO} is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO2 devices do not meet the relevant JEDEC specification are documented in the table below.

2. MachXO2 devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to TN1202, MachXO2 sysIO Usage Guide.

3. The dual function I²C pins SCL and SDA are limited to a V_{IL} min of -0.25 V or to -0.3 V with a duration of <10 ns.

4. For electromigration, the average DC current sourced or sinked by I/O pads between two consecutive VCCIO or GND pad connections, or between the last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed a maximum of n * 8 mA. "n" is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

Input Standard	V _{CCIO} (V)	V _{IL} Max. (V)
LVCMOS 33	1.5	0.685
LVCMOS 25	1.5	0.687
LVCMOS 18	1.5	0.655

sysIO Differential Electrical Characteristics

The LVDS differential output buffers are available on the top side of MachXO2-640U, MachXO2-1200/U and higher density devices in the MachXO2 PLD family.

LVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V V	Input Voltage	V _{CCIO} = 3.3 V	0		2.605	V
V _{INP} V _{INM}	input voltage	$V_{CCIO} = 2.5 V$	0		2.05	V
V _{THD}	Differential Input Threshold		±100	—		mV
V.	Input Common Mode Voltage	V _{CCIO} = 3.3 V	0.05		2.6	V
V _{CM}	Input Common Mode Voltage	$V_{CCIO} = 2.5 V$	0.05		2.0	V
I _{IN}	Input current	Power on	_	_	±10	μA
V _{OH}	Output high voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	_	1.375		V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.90	1.025		V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_		50	mV
V _{OS}	Output voltage offset	$(V_{OP} + V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.20	1.395	V
ΔV_{OS}	Change in V _{OS} between H and L		—	—	50	mV
I _{OSD}	Output short circuit current	$V_{OD} = 0 V$ driver outputs shorted	_		24	mA

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units
Basic Functions		
16-bit decoder	13.9	ns
4:1 MUX	10.9	ns
16:1 MUX	12.0	ns

Register-to-Register Performance

–3 Timing	Units
191	MHz
134	MHz
148	MHz
77	MHz
90	MHz
214	MHz
	191 134 148 77 90

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	-3	-	2	-	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Cloo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	150	_	125	—	104	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	—	1250		1272	—	1296	ps
		MachXO2-640ZE		1161		1183	—	1206	ps
	Primary Clock Skew Within a	MachXO2-1200ZE		1213		1267	—	1322	ps
^t SKEW_PRI	Device	MachXO2-2000ZE		1204		1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	—	1269	ps
		MachXO2-7000ZE		1243		1268	—	1296	ps
Edge Clock									
f _{MAX_EDGE⁸}	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin	Propagation Delay			1	1				1
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O I	Pin Parameters (Using Primary	Clock without PLL)	1	1	1	1		1	
		MachXO2-256ZE		10.46	—	10.86	—	11.25	ns
	Clock to Output – PIO Output	MachXO2-640ZE		10.52		10.92	—	11.32	ns
		MachXO2-1200ZE		11.24		11.68	—	12.12	ns
t _{CO}	Register	MachXO2-2000ZE		11.27		11.71	—	12.16	ns
		MachXO2-4000ZE		11.28		11.78	—	12.28	ns
		MachXO2-7000ZE	—	11.22		11.76	—	12.30	ns
		MachXO2-256ZE	-0.21		-0.21	—	-0.21	—	ns
		MachXO2-640ZE	-0.22	—	-0.22	—	-0.22	—	ns
	Clock to Data Setup – PIO	MachXO2-1200ZE	-0.25	—	-0.25	—	-0.25	—	ns
t _{SU}	Input Register	MachXO2-2000ZE	-0.27	—	-0.27	—	-0.27	—	ns
		MachXO2-4000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33	—	-0.33		-0.33		ns
		MachXO2-256ZE	3.96		4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01		4.31	—	4.71	—	ns
+	Clock to Data Hold – PIO Input	MachXO2-1200ZE	3.95		4.29	_	4.73	_	ns
t _H	Register	MachXO2-2000ZE	3.94	—	4.29	—	4.74	—	ns
		MachXO2-4000ZE	3.96		4.36	—	4.87	—	ns
		MachXO2-7000ZE	3.93		4.37	—	4.91		ns
		IVIACHAU2-7000ZE	3.93	—	4.37		4.91		

Over Recommended Operating Conditions

sysCLOCK PLL Timing (Continued)

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
t _{ROTATE_WD}	PHASESTEP Pulse Width		4	_	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum f_{PFD} As the f_{PFD} increases the time will decrease to approximately 60% the value listed.


6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1TG100C	2112	1.2 V	–1	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-2TG100C	2112	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-3TG100C	2112	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-1MG132C	2112	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-2MG132C	2112	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-3MG132C	2112	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-1TG144C	2112	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-2TG144C	2112	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-3TG144C	2112	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-1BG256C	2112	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-2BG256C	2112	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-3BG256C	2112	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-1FTG256C	2112	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-2FTG256C	2112	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-3FTG256C	2112	1.2 V	-3	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84C	4320	1.2 V	-1	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-2QN84C	4320	1.2 V	-2	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-3QN84C	4320	1.2 V	-3	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-1MG132C	4320	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-2MG132C	4320	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-3MG132C	4320	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-1TG144C	4320	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-2TG144C	4320	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-3TG144C	4320	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-1BG256C	4320	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-2BG256C	4320	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-3BG256C	4320	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-1FTG256C	4320	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-2FTG256C	4320	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-3FTG256C	4320	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-1BG332C	4320	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-2BG332C	4320	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-3BG332C	4320	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-1FG484C	4320	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-2FG484C	4320	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-3FG484C	4320	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR11	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR11	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR11	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR11	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR11	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR1 ¹	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-4MG132I	4320	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-5MG132I	4320	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-6MG132I	4320	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-4TG144I	4320	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-5TG144I	4320	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-6TG144I	4320	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-4MG184I	4320	1.2 V	-4	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-5MG184I	4320	1.2 V	-5	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-6MG184I	4320	1.2 V	-6	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-4BG256I	4320	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-5BG256I	4320	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-6BG256I	4320	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-4FTG256I	4320	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-5FTG256I	4320	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-6FTG256I	4320	1.2 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-4BG332I	4320	1.2 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-5BG332I	4320	1.2 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-6BG332I	4320	1.2 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-4FG484I	4320	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-4000HE-5FG484I	4320	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-4000HE-6FG484I	4320	1.2 V	-6	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HE-4TG144I	6864	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-5TG144I	6864	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-6TG144I	6864	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-4BG256I	6864	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-5BG256I	6864	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-6BG256I	6864	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-4FTG256I	6864	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-5FTG256I	6864	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-6FTG256I	6864	1.2 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-4BG332I	6864	1.2 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-5BG332I	6864	1.2 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-6BG332I	6864	1.2 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-4FG484I	6864	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-7000HE-5FG484I	6864	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-7000HE-6FG484I	6864	1.2 V	-6	Halogen-Free fpBGA	484	IND

Date	Version	Section	Change Summary					
May 2014	2.5	Architecture	Updated TransFR (Transparent Field Reconfiguration) section. Updated TransFR description for PLL use during background Flash programming.					
February 2014	02.4	Introduction	Included the 49 WLCSP package in the MachXO2 Family Selection Guide table.					
				Architecture	Added information to Standby Mode and Power Saving Options sec- tion.			
		Pinout Information	Added the XO2-2000 49 WLCSP in the Pinout Information Summary table.					
		Ordering Information	Added UW49 package in MachXO2 Part Number Description.					
			Added and LCMXO2-2000ZE-1UWG49CTR in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging sec- tion.					
			Added and LCMXO2-2000ZE-1UWG49ITR in Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section.					
December 2013 02.3	02.3	02.3	3 02.3	Architecture	Updated information on CLKOS output divider in sysCLOCK Phase Locked Loops (PLLs) section.			
		DC and Switching	Updated Static Supply Current – ZE Devices table.					
								Characteristics
			Updated $\rm V_{OS}$ test condition in sysIO Differential Electrical Characteristics - LVDS table.					
September 2013	02.2	Architecture	Removed I ² C Clock-Stretching feature per PCN #10A-13.					
			Removed information on PDPR memory in RAM Mode section.					
			Updated Supported Input Standards table.					
		DC and Switching Characteristics	Updated Power-On-Reset Voltage Levels table.					
June 2013	02.1	Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.					
			sysCLOCK Phase Locked Loops (PLLs) section – Added missing cross reference to sysCLOCK PLL Timing table.					
		DC and Switching Characteristics	Added slew rate information to footnote 2 of the MachXO2 External Switching Characteristics – HC/HE Devices and the MachXO2 Exter- nal Switching Characteristics – ZE Devices tables.					
			Power-On-Reset Voltage Levels table – Added symbols.					

Date	Version	Section	Change Summary
May 2011	01.3	Multiple	Replaced "SED" with "SRAM CRC Error Detection" throughout the document.
		DC and Switching Characteristics	Added footnote 1 to Program Erase Specifications table.
		Pinout Information	Updated Pin Information Summary tables.
			Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table.
April 2011	01.2	_	Data sheet status changed from Advance to Preliminary.
		Introduction	Updated MachXO2 Family Selection Guide table.
		Architecture	Updated Supported Input Standards table.
			Updated sysMEM Memory Primitives diagram.
			Added differential SSTL and HSTL IO standards.
		DC and Switching Characteristics	Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current.
			Added VREF specifications to sysIO recommended operating condi- tions.
			Updating timing information based on characterization.
			Added differential SSTL and HSTL IO standards.
		Ordering Information	Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages.
			Added R1 device specifications.
January 2011	01.1	All	Included ultra-high I/O devices.
		DC and Switching Characteristics	Recommended Operating Conditions table – Added footnote 3.
			DC Electrical Characteristics table – Updated data for $\rm I_{IL}, I_{IH}, V_{HYST}$ typical values updated.
			Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Power-On-Reset Voltage Levels table - clarified note 3.
			Clarified VCCIO related recommended operating conditions specifications.
			Added power supply ramp rate requirements.
			Added Power Supply Ramp Rates table.
			Updated Programming/Erase Specifications table.
			Removed references to V _{CCP.}
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Removed references to V _{CCP.}
November 2010	01.0	—	Initial release.