E. Kentice Semiconductor Corporation - <u>LCMX02-256ZE-3TG100I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	55
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-256ze-3tg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

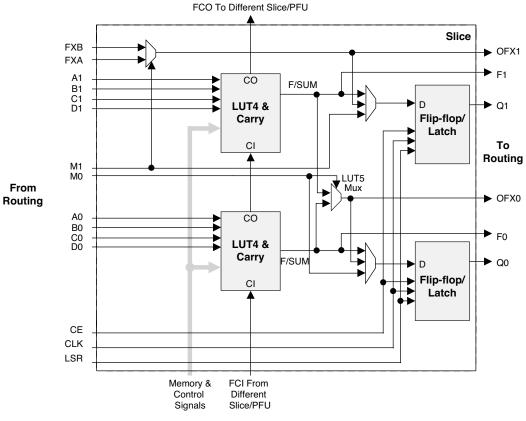
The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external V_{CC} supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external V_{CC} supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other.

The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.


The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

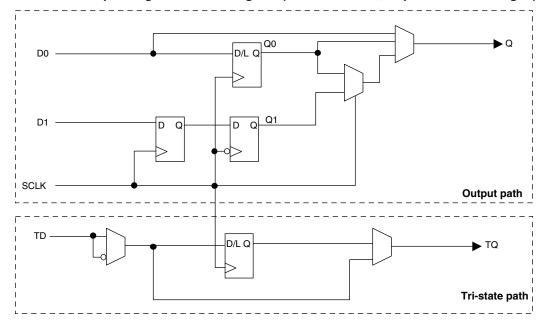
Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-14 shows the output register block on the left, top and bottom edges.

Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Right Edge

The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges.

In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-15 shows the output register block on the right edge.

Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

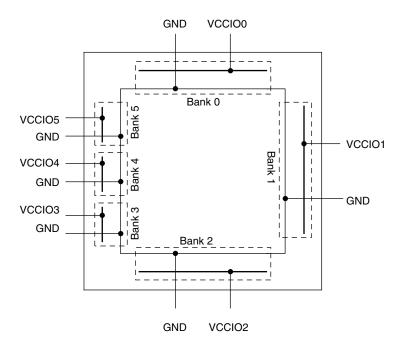
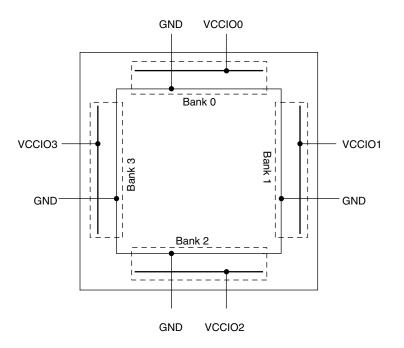



Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

Hot Socketing

The MachXO2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO2 ideal for many multiple power supply and hot-swap applications.

On-chip Oscillator

Every MachXO2 device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-14 lists all the available MCLK frequencies.

Table 2-14. Available MCLK Frequencies

MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

Embedded Hardened IP Functions and User Flash Memory

All MachXO2 devices provide embedded hardened functions such as SPI, I²C and Timer/Counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-20.

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

MachXO2 Family Data Sheet DC and Switching Characteristics

March 2017

Data Sheet DS1035

Absolute Maximum Ratings^{1, 2, 3}

	MachXO2 ZE/HE (1.2 V)	MachXO2 HC (2.5 V / 3.3 V)
Supply Voltage V _{CC}	–0.5 V to 1.32 V	–0.5 V to 3.75 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
I/O Tri-state Voltage Applied ^{4, 5}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Dedicated Input Voltage Applied ⁴	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Storage Temperature (Ambient)	–55 °C to 125 °C	–55 °C to 125 °C
Junction Temperature (T _J)	–40 °C to 125 °C	–40 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

5. The dual function I^2C pins SCL and SDA are limited to -0.25 V to 3.75 V or to -0.3 V with a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage for 1.2 V Devices	1.14	1.26	V
VCC	Core Supply Voltage for 2.5 V / 3.3 V Devices	2.375	3.6	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	1.14	3.6	V
t _{JCOM}	Junction Temperature Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

Power Supply Ramp Rates¹

Symbol	Parameter		Тур.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.01		100	V/ms

1. Assumes monotonic ramp rates.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
1	Core Power Supply	LCMXO2-2000HC	4.80	mA
ICC		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Іссю	Bank Power Supply⁵ V _{CCIO} = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

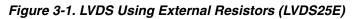
Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

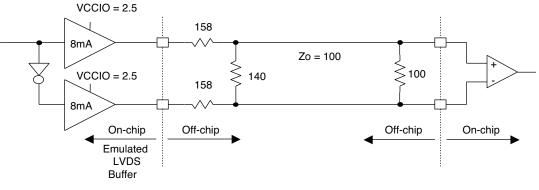
1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.


5. $T_J = 25$ °C, power supplies at nominal voltage.


6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

LVDS Emulation

MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

_									
Parameter	Description	Тур.	Units						
Z _{OUT}	Output impedance	20	Ohms						
R _S	Driver series resistor	158	Ohms						
R _P	Driver parallel resistor	140	Ohms						
R _T	Receiver termination	100	Ohms						
V _{OH}	Output high voltage	1.43	V						
V _{OL}	Output low voltage	1.07	V						
V _{OD}	Output differential voltage	0.35	V						
V _{CM}	Output common mode voltage	1.25	V						
Z _{BACK}	Back impedance	100.5	Ohms						
I _{DC}	DC output current	6.03	mA						

			_	6	-	-5	-	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200HC-HE	0.41		0.48		0.55		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	0.42		0.49		0.56		ns
t _{HPLL}	Register	MachXO2-4000HC-HE	0.43		0.50		0.58		ns
		MachXO2-7000HC-HE	0.46		0.54		0.62		ns
		MachXO2-1200HC-HE	2.88	—	3.19	—	3.72	—	ns
	Clock to Data Setup – PIO PLL Input Register with Data Input	MachXO2-2000HC-HE	2.87	—	3.18	—	3.70	—	ns
SU_DELPLL Input Register with Data Delay		MachXO2-4000HC-HE	2.96	—	3.28	—	3.81	—	ns
		MachXO2-7000HC-HE	3.05	—	3.35	—	3.87	—	ns
		MachXO2-1200HC-HE	-0.83	—	-0.83	—	-0.83	—	ns
+	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.83	—	-0.83	—	-0.83	—	ns
^t H_DELPLL	Register with Input Data Delay	MachXO2-4000HC-HE	-0.87		-0.87	—	-0.87		ns
		MachXO2-7000HC-HE	-0.91		-0.91		-0.91		ns
Generic DDI	RX1 Inputs with Clock and Data	Aligned at Pin Using PC	LK Pin	for Cloc	k Input –	GDDR	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.317		0.344		0.368	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2 devices, all sides	0.742		0.702		0.668		UI
f _{DATA}	DDRX1 Input Data Speed			300		250		208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150	—	125	—	104	MHz
Generic DDF	X1 Inputs with Clock and Data C	Centered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.566		0.560		0.538		ns
t _{HO}	Input Data Hold After CLK	All MachXO2 devices,	0.778	—	0.879		1.090	—	ns
f _{DATA}	DDRX1 Input Data Speed	all sides	_	300	—	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150		125		104	MHz
Generic DDF	RX2 Inputs with Clock and Data	Aligned at Pin Using PC	LK Pin 1	or Clock	< Input –	GDDRX	2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.316		0.342		0.364	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.710	—	0.675		0.679	—	UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	332	—	277	—	231	MHz
f _{SCLK}	SCLK Frequency			166	—	139	—	116	MHz
Generic DDF	X2 Inputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	2_RX.EC	LK.Cent	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219	—	0.198	—	ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U.	0.287		0.287	—	0.344		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-0400, MachXO2-1200/U and larger devices,		664	_	554		462	Mbps
4	DDRX2 ECLK Frequency	bottom side only ¹¹		332		277	_	231	MHz
f _{DDRX2}	DDI INZ LOLIN I TEQUENCY			00Z		211		201	

			-	-6		-5	-	-4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDF	R4 Inputs with Clock and Data A	Aligned at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320		0.345	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.739	—	0.699		0.703	—	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378		315		262	MHz
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz
	4 Inputs with Clock and Data C	entered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	4_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	0.198	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.287	—	0.287		0.344	—	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378	—	315		262	MHz
f _{SCLK}	SCLK Frequency			95	—	79	_	66	MHz
7:1 LVDS In	puts (GDDR71_RX.ECLK.7:1) ^{9,}	12							
t _{DVA}	Input Data Valid After ECLK			0.290		0.320		0.345	UI
t _{DVE}	Input Data Hold After ECLK		0.739	—	0.699		0.703	—	UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U and	_	756	_	630	_	524	Mbps
f _{DDR71}	DDR71 ECLK Frequency	larger devices, bottom side only. ¹¹		378		315		262	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz
Generic DDF	R Outputs with Clock and Data	Aligned at Pin Using PC	LK Pin f	for Clock	k Input –	GDDR	(1_TX.S	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output			0.520	_	0.550	_	0.580	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides.	_	0.520	_	0.550	_	0.580	ns
f _{DATA}	DDRX1 Output Data Speed			300		250		208	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125		104	MHz
	Outputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		1.210	_	1.510	_	1.870	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2 devices,	1.210	_	1.510	_	1.870	_	ns
f _{DATA}	DDRX1 Output Data Speed	all sides.		300	—	250	_	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	-		150	_	125	_	104	MHz
Generic DDF	X2 Outputs with Clock and Data	a Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and	_	0.200	_	0.215	_	0.230	ns
f _{DATA}	DDRX2 Serial Output Data Speed	larger devices, top side only.	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK frequency	1		332	—	277	_	231	MHz
f _{SCLK}	SCLK Frequency	1	—	166	—	139	_	116	MHz

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units	
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz	
fout	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz	
fout2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz	
f _{VCO}	PLL VCO Frequency		200	800	MHz	
f _{PFD}	Phase Detector Input Frequency		7	400	MHz	
AC Characteri	stics	•				
t _{DT}	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%	
t _{DT_TRIM} ⁷	Edge Duty Trim Accuracy		-75	75	%	
t _{PH} ⁴	Output Phase Accuracy		-6	6	%	
	Output Clask Daviad Litter	f _{OUT} > 100 MHz	—	150	ps p-p	
	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP	
	Output Olaski Ousla ta susla littari	f _{OUT} > 100 MHz	—	180	ps p-p	
	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	—	0.009	UIPP	
. 18	Output Cleak Phase litter		—	160	ps p-p	
t _{opjit} 1,8	Output Clock Phase Jitter	f _{PFD} < 100 MHz	—	— 0.011 UIPP		
		f _{OUT} > 100 MHz	—	230	ps p-p	
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP	
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p	
	(Fractional-N)	f _{OUT} < 100 MHz			UIPP	
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps	
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9	—	ns	
tLOCK ^{2, 5}	PLL Lock-in Time		—	15	ms	
t _{UNLOCK}	PLL Unlock Time		—	50	ns	
. 6	Innut Clask Daviad Littar	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p	
t _{IPJIT} ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP	
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns	
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns	
t _{STABLE} ⁵	STANDBY High to PLL Stable		_	15	ms	
t _{RST}	RST/RESETM Pulse Width		1		ns	
t _{RSTREC}	RST Recovery Time		1		ns	
t _{RST_DIV}	RESETC/D Pulse Width		10		ns	
t _{RSTREC_DIV}	RESETC/D Recovery Time		1		ns	
t _{ROTATE-SETUP}	PHASESTEP Setup Time		10		ns	

Over Recommended Operating Conditions

sysCONFIG Port Timing Specifications

Symbol	Pa	arameter	Min.	Max.	Units	
All Configuration M	odes		1			
t _{PRGM}	PROGRAMN low p	oulse accept	55	—	ns	
t _{PRGMJ}	PROGRAMN low p	oulse rejection	—	25	ns	
t _{INITL}	INITN low time	LCMXO2-256	—	— 30		
		LCMXO2-640	—	35	μs	
		LCMXO2-640U/ LCMXO2-1200	—	55	μs	
		LCMXO2-1200U/ LCMXO2-2000	—	70	μs	
		LCMXO2-2000U/ LCMXO2-4000	—	105	μs	
		LCMXO2-7000	_	130	μs	
t _{DPPINIT}	PROGRAMN low to	o INITN low	—	150	ns	
t _{DPPDONE}	PROGRAMN low to	o DONE low	—	150	ns	
t _{IODISS}	PROGRAMN low to	o I/O disable	—	120	ns	
Slave SPI			•			
f _{MAX}	CCLK clock freque	CCLK clock frequency			MHz	
t _{CCLKH}	CCLK clock pulse	width high	7.5	—	ns	
t _{CCLKL}	CCLK clock pulse	width low	7.5	—	ns	
t _{STSU}	CCLK setup time	CCLK setup time		—	ns	
t _{STH}	CCLK hold time		0	—	ns	
t _{STCO}	CCLK falling edge	to valid output	—	10	ns	
t _{STOZ}	CCLK falling edge	to valid disable	—	10	ns	
t _{STOV}	CCLK falling edge	to valid enable	—	10	ns	
t _{SCS}	Chip select high tin	ne	25	—	ns	
t _{SCSS}	Chip select setup t	ime	3	—	ns	
t _{SCSH}	Chip select hold tin	ne	3	—	ns	
Master SPI			•			
f _{MAX}	MCLK clock freque	ency	—	133	MHz	
t _{MCLKH}	MCLK clock pulse	width high	3.75	—	ns	
t _{MCLKL}	MCLK clock pulse	MCLK clock pulse width low			ns	
t _{STSU}	MCLK setup time		5	—	ns	
t _{STH}	MCLK hold time	-			ns	
t _{CSSPI}	INITN high to chip	select low	100	200	ns	
t _{MCLK}	INITN high to first I	VCLK edge	0.75	1	μs	

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, or when reserved as INITn in user mode, this pin has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress. During configuration, or when reserved as DONE in user mode, this pin has an active pull-up.
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SN	Ι	Slave SPI active low chip select input.
CSSPIN	I/O	Master SPI active low chip select output.
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.
SCL	I/O	Slave I ² C clock input and master I ² C clock output.
SDA	I/O	Slave I ² C data input and master I ² C data output.

_

	MachXO2-7000					
	144 TQFP	256 caBGA	256 ftBGA	332 caBGA	400 caBGA	484 fpBGA
General Purpose I/O per Bank		1	1			1
Bank 0	27	50	50	68	83	82
Bank 1	29	52	52	70	84	84
Bank 2	29	52	52	70	84	84
Bank 3	9	16	16	24	28	28
Bank 4	10	16	16	16	24	24
Bank 5	10	20	20	30	32	32
Total General Purpose Single Ended I/O	114	206	206	278	335	334
Differential I/O per Bank						
Bank 0	14	25	25	34	42	41
Bank 1	14	26	26	35	42	42
Bank 2	14	26	26	35	42	42
Bank 3	4	8	8	12	14	14
Bank 4	5	8	8	8	12	12
Bank 5	5	10	10	15	16	16
Total General Purpose Differential I/O	56	103	103	139	168	167
Dual Function I/O	37	37	37	37	37	37
High-speed Differential I/O		-	-	-	-	-
Bank 0	9	20	20	21	21	21
Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	9	20	20	21	21	21
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	14	20	20	21	21	21
DQS Groups			•		•	•
Bank 1	2	2	2	2	2	2
VCCIO Pins						
Bank 0	3	4	4	4	5	10
Bank 1	3	4	4	4	5	10
Bank 2	3	4	4	4	5	10
Bank 3	1	1	1	2	2	3
Bank 4	1	2	2	1	2	4
Bank 5	1	1	1	2	2	3
		-	-	-		
VCC	4	8	8	8	10	12
GND	12	24	24	27	33	48
NC	1	1	1	1	0	49
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	144	256	256	332	400	484

High-Performance Commercial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32C	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	COM
LCMXO2-256HC-5SG32C	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	COM
LCMXO2-256HC-6SG32C	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	COM
LCMXO2-256HC-4SG48C	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	COM
LCMXO2-256HC-5SG48C	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	COM
LCMXO2-256HC-6SG48C	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	COM
LCMXO2-256HC-4UMG64C	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	COM
LCMXO2-256HC-5UMG64C	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	COM
LCMXO2-256HC-6UMG64C	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	COM
LCMXO2-256HC-4TG100C	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-256HC-5TG100C	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-256HC-6TG100C	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-256HC-4MG132C	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-256HC-5MG132C	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-256HC-6MG132C	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48C	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	COM
LCMXO2-640HC-5SG48C	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	COM
LCMXO2-640HC-6SG48C	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	COM
LCMXO2-640HC-4TG100C	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-640HC-5TG100C	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-640HC-6TG100C	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-640HC-4MG132C	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-640HC-5MG132C	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-640HC-6MG132C	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144C	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-640UHC-5TG144C	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-640UHC-6TG144C	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR11	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR11	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR11	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR11	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR11	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR11	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR11	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

MachXO2 Family Data Sheet Supplemental Information

April 2012

Data Sheet DS1035

For Further Information

A variety of technical notes for the MachXO2 family are available on the Lattice web site.

- TN1198, Power Estimation and Management for MachXO2 Devices
- TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide
- TN1201, Memory Usage Guide for MachXO2 Devices
- TN1202, MachXO2 sysIO Usage Guide
- TN1203, Implementing High-Speed Interfaces with MachXO2 Devices
- TN1204, MachXO2 Programming and Configuration Usage Guide
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices
- TN1206, MachXO2 SRAM CRC Error Detection Usage Guide
- TN1207, Using TraceID in MachXO2 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO2 Device Pinout Files
- Thermal Management document
- · Lattice design tools

For further information on interface standards, refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org
- PCI: www.pcisig.com

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
May 2011	01.3	Multiple	Replaced "SED" with "SRAM CRC Error Detection" throughout the document.
		DC and Switching Characteristics	Added footnote 1 to Program Erase Specifications table.
		Pinout Information	Updated Pin Information Summary tables.
			Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table.
April 2011	01.2	_	Data sheet status changed from Advance to Preliminary.
		Introduction	Updated MachXO2 Family Selection Guide table.
		Architecture	Updated Supported Input Standards table.
			Updated sysMEM Memory Primitives diagram.
			Added differential SSTL and HSTL IO standards.
		DC and Switching Characteristics	Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current.
			Added VREF specifications to sysIO recommended operating condi- tions.
			Updating timing information based on characterization.
			Added differential SSTL and HSTL IO standards.
		Ordering Information	Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages.
			Added R1 device specifications.
January 2011	01.1	All	Included ultra-high I/O devices.
		DC and Switching Characteristics	Recommended Operating Conditions table – Added footnote 3.
			DC Electrical Characteristics table – Updated data for $\rm I_{IL}, I_{IH}, V_{HYST}$ typical values updated.
			Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T _{DIA} and T _{DIB.}
			Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Power-On-Reset Voltage Levels table - clarified note 3.
			Clarified VCCIO related recommended operating conditions specifications.
			Added power supply ramp rate requirements.
			Added Power Supply Ramp Rates table.
			Updated Programming/Erase Specifications table.
			Removed references to V _{CCP.}
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Removed references to V _{CCP.}
November 2010	01.0	_	Initial release.