E. K Faltice Semiconductor Corporation - <u>LCMXO2-4000HC-4QN84I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	68
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	84-VFQFN Dual Rows, Exposed Pad
Supplier Device Package	84-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-4000hc-4qn84i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO2 Family Data Sheet Architecture

March 2016

Data Sheet DS1035

Architecture Overview

The MachXO2 family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). The larger logic density devices in this family have sysCLOCK[™] PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figure 2-1 and Figure 2-2 show the block diagrams of the various family members.

Note: MachXO2-256, and MachXO2-640/U are similar to MachXO2-1200. MachXO2-256 has a lower LUT count and no PLL or EBR blocks. MachXO2-640 has no PLL, a lower LUT count and two EBR blocks. MachXO2-640U has a lower LUT count, one PLL and seven EBR blocks.

Figure 2-2. Top View of the MachXO2-4000 Device

Note: MachXO2-1200U, MachXO2-2000/U and MachXO2-7000 are similar to MachXO2-4000. MachXO2-1200U and MachXO2-2000 have a lower LUT count, one PLL, and eight EBR blocks. MachXO2-2000U has a lower LUT count, two PLLs, and 10 EBR blocks. MachXO2-7000 has a higher LUT count, two PLLs, and 26 EBR blocks.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the MachXO2 family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found in MachXO2-640/U and larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage.

The MachXO2 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO2 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks on MachXO2-640U, MachXO2-1200/U and larger devices. These blocks are located at the ends of the on-chip Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

MachXO2 devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/ counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports.

Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO2 devices are available for operation from 3.3 V, 2.5 V and 1.2 V power supplies, providing easy integration into the overall system.

PFU Blocks

The core of the MachXO2 device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

Figure 2-21. PC Core Block Diagram

Table 2-15 describes the signals interfacing with the I²C cores.

 Table 2-15.
 PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device.
i2c_sda	Bi-directional	Bi-directional data line of the l^2C core. The signal is an output when data is transmitted from the l^2C core. The signal is an input when data is received into the l^2C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of l^2C ports in each MachXO2 device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256ZE	13	mA
1		LCMXO2-640ZE	14	mA
	Core Power Supply	LCMXO2-1200ZE	15	mA
CC		LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. TJ = 25 °C, power supplies at nominal voltage.

6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

			-6		-5		-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}	·	·			•	•			
t _{DVADQ}	Input Data Valid After DQS Input		_	0.369	_	0.395	_	0.421	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.529	_	0.530	_	0.527	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25		0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	280	_	250	_	208	Mbps
f _{SCLK}	SCLK Frequency			140	—	125	—	104	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	280	0	250	0	208	Mbps
DDR ^{9, 12}	•								
t _{DVADQ}	Input Data Valid After DQS Input		_	0.350	_	0.387	_	0.414	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.545	_	0.538		0.532	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices, right	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed			300	—	250	—	208	Mbps
f _{SCLK}	SCLK Frequency			150	—	125	—	104	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps
DDR2 ^{9, 12}									
t _{DVADQ}	Input Data Valid After DQS Input		_	0.360	_	0.378	_	0.406	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.555	_	0.549	_	0.542	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed	1	—	300	—	250	—	208	Mbps
f _{SCLK}	SCLK Frequency	1	—	150	—	125	—	104	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

8. This number for general purpose usage. Duty cycle tolerance is +/- 10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32 QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	-3	-	-2	-	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks			1						
Primary Cloo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	150	_	125	_	104	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	_	1250	—	1272		1296	ps
		MachXO2-640ZE		1161		1183		1206	ps
	Primary Clock Skew Within a	MachXO2-1200ZE	_	1213		1267		1322	ps
^t SKEW_PRI	Device	MachXO2-2000ZE		1204		1250		1296	ps
		MachXO2-4000ZE		1195		1233		1269	ps
		MachXO2-7000ZE		1243		1268		1296	ps
Edge Clock									
f _{MAX_EDGE} ⁸	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin	Propagation Delay		1	1	1	1	1	1	
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O	Pin Parameters (Using Primary	Clock without PLL)	I	I	I	I	I		
		MachXO2-256ZE		10.46	—	10.86	—	11.25	ns
		MachXO2-640ZE	_	10.52	—	10.92		11.32	ns
	Clock to Output – PIO Output	MachXO2-1200ZE	_	11.24		11.68		12.12	ns
^t CO	Register	MachXO2-2000ZE	_	11.27		11.71		12.16	ns
		MachXO2-4000ZE	_	11.28		11.78		12.28	ns
		MachXO2-7000ZE		11.22		11.76		12.30	ns
		MachXO2-256ZE	-0.21		-0.21		-0.21		ns
		MachXO2-640ZE	-0.22		-0.22		-0.22	—	ns
	Clock to Data Setup – PIO	MachXO2-1200ZE	-0.25	—	-0.25		-0.25	_	ns
t _{SU}	Input Register	MachXO2-2000ZE	-0.27		-0.27		-0.27	_	ns
		MachXO2-4000ZE	-0.31		-0.31		-0.31	_	ns
		MachXO2-7000ZE	-0.33		-0.33		-0.33	_	ns
		MachXO2-256ZE	3.96	—	4.25	—	4.65	—	ns
		MachXO2-640ZE	4.01		4.31		4.71	_	ns
+	Clock to Data Hold – PIO Input	MachXO2-1200ZE	3.95		4.29		4.73	—	ns
Ч	Register	MachXO2-2000ZE	3.94		4.29		4.74	_	ns
		MachXO2-4000ZE	3.96		4.36		4.87	_	ns
		MachXO2-7000ZE	3.93	_	4.37	_	4.91		ns

Over Recommended Operating Conditions

			-3		-2		_1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}			1						
t _{DVADQ}	Input Data Valid After DQS Input			0.349	_	0.381	_	0.396	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.665	_	0.630		0.613	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25		0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	120	_	110	_	96	Mbps
f _{SCLK}	SCLK Frequency		—	60		55		48	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	120	0	110	0	96	Mbps
DDR ^{9, 12}	•	•							
t _{DVADQ}	Input Data Valid After DQS Input			0.347	_	0.374	_	0.393	UI
t _{DVEDQ}	Input Data Hold After DQS Input	-	0.665	_	0.637		0.616	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25		0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed			140	_	116		98	Mbps
f _{SCLK}	SCLK Frequency			70		58	—	49	MHz
f _{MEM DDR}	MEM DDR Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps
DDR2 ^{9, 12}		ı	1	1	1		1	1	
t _{DVADQ}	Input Data Valid After DQS Input		_	0.372	_	0.394	_	0.410	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.690	_	0.658	_	0.618	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed	1	—	140	—	116		98	Mbps
f _{SCLK}	SCLK Frequency	1	<u> </u>	70	—	58		49	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0 pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 167 ps (-3), 182 ps (-2), 195 ps (-1).

8. This number for general purpose usage. Duty cycle tolerance is +/-10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32-Pin QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

MachXO2 Oscillator Output Frequency

Symbol	Parameter	Min.	Тур.	Max	Units
f _{MAX}	Oscillator Output Frequency (Commercial Grade Devices, 0 to 85°C)	125.685	133	140.315	MHz
	Oscillator Output Frequency (Industrial Grade Devices, -40 °C to 100 °C)	124.355	133	141.645	MHz
t _{DT}	Output Clock Duty Cycle	43	50	57	%
t _{OPJIT} 1	Output Clock Period Jitter	0.01	0.012	0.02	UIPP
t _{STABLEOSC}	STDBY Low to Oscillator Stable	0.01	0.05	0.1	μs

1. Output Clock Period Jitter specified at 133 MHz. The values for lower frequencies will be smaller UIPP. The typical value for 133 MHz is 95 ps and for 2.08 MHz the typical value is 1.54 ns.

MachXO2 Standby Mode Timing – HC/HE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	—	9	ns
		LCMXO2-256		—		μs
		LCMXO2-640		—		μs
	USERSTDBY Low to Power Up	LCMXO2-640U		—		μs
		LCMXO2-1200	20	—	50	μs
t _{PWRUP}		LCMXO2-1200U		—		μs
		LCMXO2-2000		—		μs
		LCMXO2-2000U		—		μs
		LCMXO2-4000		—		μs
		LCMXO2-7000		—		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	18	_	—	ns

MachXO2 Standby Mode Timing – ZE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_		13	ns
	USERSTDBY Low to Power Up	LCMXO2-256		_		μs
		LCMXO2-640		_		μs
		LCMXO2-1200	20	_	50	μs
PWRUP		LCMXO2-2000		_		μs
		LCMXO2-4000		_		μs
		LCMXO2-7000		_		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	19	_	_	ns
t _{BNDGAPSTBL}	USERSTDBY High to Bandgap Stable	All			15	ns

Flash Download Time^{1, 2}

Symbol	Parameter	Device	Тур.	Units
		LCMXO2-256	0.6	ms
		LCMXO2-640	1.0	ms
		LCMXO2-640U	1.9	ms
		LCMXO2-1200	1.9	ms
t _{REFRESH}	POR to Device I/O Active	LCMXO2-1200U	1.4	ms
		LCMXO2-2000	1.4	ms
		LCMXO2-2000U	2.4	ms
		LCMXO2-4000	2.4	ms
		LCMXO2-7000	3.8	ms

1. Assumes sysMEM EBR initialized to an all zero pattern if they are used.

2. The Flash download time is measured starting from the maximum voltage of POR trip point.

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK clock frequency	—	25	MHz
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	—	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	20	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns

Pinout Information Summary

		Ма	achXO2-2	256		MachXO2-640			MachXO2-640U
	32 QFN ¹	48 QFN ³	64 ucBGA	100 TQFP	132 csBGA	48 QFN ³	100 TQFP	132 csBGA	144 TQFP
General Purpose I/O per Bank	•							•	
Bank 0	8	10	9	13	13	10	18	19	27
Bank 1	2	10	12	14	14	10	20	20	26
Bank 2	9	10	11	14	14	10	20	20	28
Bank 3	2	10	12	14	14	10	20	20	26
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Single Ended I/O	21	40	44	55	55	40	78	79	107
Differential I/O per Bank									
Bank 0	4	5	5	7	7	5	9	10	14
Bank 1	1	5	6	7	7	5	10	10	13
Bank 2	4	5	5	7	7	5	10	10	10
Bank 3	1	5	6	7	7	5	10	10	13
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
Total General Purpose Differential I/O	10	20	22	28	28	20	39	40	54
				_	-	-			-
Dual Function I/O	22	25	27	29	29	25	29	29	33
High-speed Differential I/O	•							•	
Bank 0	0	0	0	0	0	0	0	0	7
Gearboxes									
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	0	0	0	0	0	0	0	0	7
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	0	0	0	0	0	0	0	0	7
DQS Groups								•	•
Bank 1	0	0	0	0	0	0	0	0	2
VCCIO Pins									
Bank 0	2	2	2	2	2	2	2	2	3
Bank 1	1	1	2	2	2	1	2	2	3
Bank 2	2	2	2	2	2	2	2	2	3
Bank 3	1	1	2	2	2	1	2	2	3
Bank 4	0	0	0	0	0	0	0	0	0
Bank 5	0	0	0	0	0	0	0	0	0
	T	n	1		1				1
VCC	2	2	2	2	2	2	2	2	4
GND ²	2	1	8	8	8	1	8	10	12
NC	0	0	1	26	58	0	3	32	8
Reserved for Configuration	1	1	1	1	1	1	1	1	1
Total Count of Bonded Pins	32	49	64	100	132	49	100	132	144

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

2. For 48 QFN package, exposed die pad is the device ground.

3. 48-pin QFN information is 'Advanced'.

Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256ZE-1SG32C	256	1.2 V	-1	Halogen-Free QFN	32	COM
LCMXO2-256ZE-2SG32C	256	1.2 V	-2	Halogen-Free QFN	32	COM
LCMXO2-256ZE-3SG32C	256	1.2 V	-3	Halogen-Free QFN	32	COM
LCMXO2-256ZE-1UMG64C	256	1.2 V	-1	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-2UMG64C	256	1.2 V	-2	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-3UMG64C	256	1.2 V	-3	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-1TG100C	256	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-2TG100C	256	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-3TG100C	256	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-1MG132C	256	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-256ZE-2MG132C	256	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-256ZE-3MG132C	256	1.2 V	-3	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640ZE-1TG100C	640	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-2TG100C	640	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-3TG100C	640	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-1MG132C	640	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-640ZE-2MG132C	640	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-640ZE-3MG132C	640	1.2 V	-3	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1SG32C	1280	1.2 V	-1	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-2SG32C	1280	1.2 V	-2	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-3SG32C	1280	1.2 V	-3	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-1TG100C	1280	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-2TG100C	1280	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-3TG100C	1280	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-1MG132C	1280	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-2MG132C	1280	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-3MG132C	1280	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-1TG144C	1280	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-2TG144C	1280	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-3TG144C	1280	1.2 V	-3	Halogen-Free TQFP	144	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1TG100C	2112	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-2TG100C	2112	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-3TG100C	2112	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-1MG132C	2112	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-2MG132C	2112	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-3MG132C	2112	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-1TG144C	2112	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-2TG144C	2112	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-3TG144C	2112	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-1BG256C	2112	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-2BG256C	2112	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-3BG256C	2112	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-1FTG256C	2112	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-2FTG256C	2112	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-3FTG256C	2112	1.2 V	-3	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84C	4320	1.2 V	-1	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-2QN84C	4320	1.2 V	-2	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-3QN84C	4320	1.2 V	-3	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-1MG132C	4320	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-2MG132C	4320	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-3MG132C	4320	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-1TG144C	4320	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-2TG144C	4320	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-3TG144C	4320	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-1BG256C	4320	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-2BG256C	4320	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-3BG256C	4320	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-1FTG256C	4320	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-2FTG256C	4320	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-3FTG256C	4320	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-1BG332C	4320	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-2BG332C	4320	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-3BG332C	4320	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-1FG484C	4320	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-2FG484C	4320	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-3FG484C	4320	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HC-4TG144C	6864	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-5TG144C	6864	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-6TG144C	6864	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-7000HC-4BG256C	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-5BG256C	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-6BG256C	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-7000HC-4FTG256C	6864	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-5FTG256C	6864	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-6FTG256C	6864	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-7000HC-4BG332C	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-5BG332C	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-6BG332C	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-7000HC-4FG400C	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-5FG400C	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-6FG400C	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	400	COM
LCMXO2-7000HC-4FG484C	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-7000HC-5FG484C	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-7000HC-6FG484C	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100CR1 ¹	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-5TG100CR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-6TG100CR1 ¹	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-4MG132CR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-5MG132CR11	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-6MG132CR11	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-4TG144CR1 ¹	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-5TG144CR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-6TG144CR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM

1. Specifications for the "LCMXO2-1200HC-speed package CR1" are the same as the "LCMXO2-1200HC-speed package C" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100I	2112	1.2 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-5TG100I	2112	1.2 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-6TG100I	2112	1.2 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-4MG132I	2112	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-5MG132I	2112	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-6MG132I	2112	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-4TG144I	2112	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-5TG144I	2112	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-6TG144I	2112	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-4BG256I	2112	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-5BG256I	2112	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-6BG256I	2112	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-4FTG256I	2112	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-5FTG256I	2112	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-6FTG256I	2112	1.2 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484I	2112	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-5FG484I	2112	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-6FG484I	2112	1.2 V	-6	Halogen-Free fpBGA	484	IND

MachXO2 Family Data Sheet Supplemental Information

April 2012

Data Sheet DS1035

For Further Information

A variety of technical notes for the MachXO2 family are available on the Lattice web site.

- TN1198, Power Estimation and Management for MachXO2 Devices
- TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide
- TN1201, Memory Usage Guide for MachXO2 Devices
- TN1202, MachXO2 sysIO Usage Guide
- TN1203, Implementing High-Speed Interfaces with MachXO2 Devices
- TN1204, MachXO2 Programming and Configuration Usage Guide
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices
- TN1206, MachXO2 SRAM CRC Error Detection Usage Guide
- TN1207, Using TraceID in MachXO2 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO2 Device Pinout Files
- Thermal Management document
- · Lattice design tools

For further information on interface standards, refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org
- PCI: www.pcisig.com

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.