
E · / Fat ice Semiconductor Corporation - <u>LCMXO2-4000HC-6BG332I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	274
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	332-FBGA
Supplier Device Package	332-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-4000hc-6bg332i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ROM Mode

ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information on the RAM and ROM modes, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Routing

There are many resources provided in the MachXO2 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

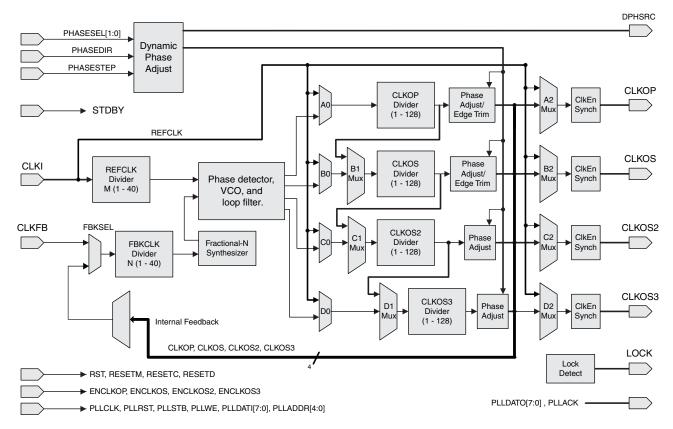
Each MachXO2 device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly.

The MachXO2 architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO2-640U, MachXO2-1200/U and higher density devices have two edge clocks each on the top and bottom edges. Lower density devices have no edge clocks. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources.

The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO2 devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals.

The maximum frequency for the primary clock network is shown in the MachXO2 External Switching Characteristics table.

The primary clock signals for the MachXO2-256 and MachXO2-640 are generated from eight 17:1 muxes The available clock sources include eight I/O sources and 9 routing inputs. Primary clock signals for the MachXO2-640U, MachXO2-1200/U and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sysCLOCK PLL outputs.



This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

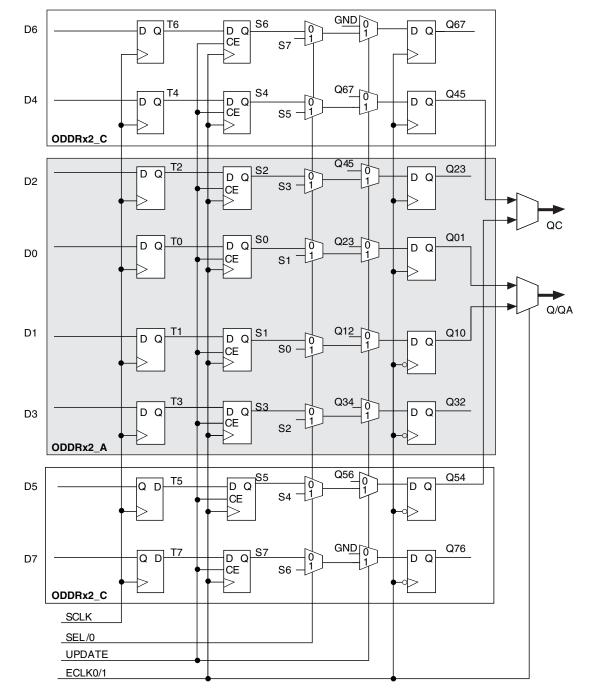

Table 2-4 provides signal descriptions of the PLL block.

Table 2-4. PLL Signal	Descriptions
-----------------------	--------------

Port Name	I/O	Description
CLKI	I	Input clock to PLL
CLKFB	I	Feedback clock
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports
PHASEDIR	I	Dynamic Phase adjustment direction
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.

Figure 2-17. Output Gearbox

More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

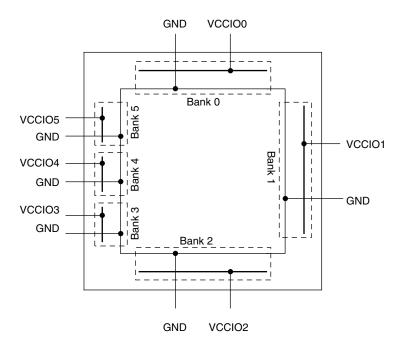
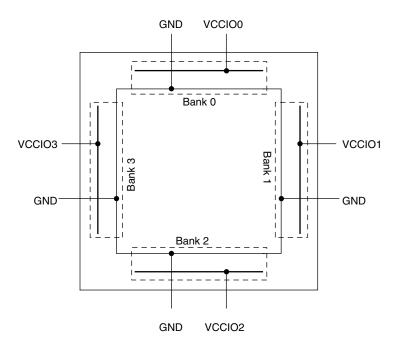



Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

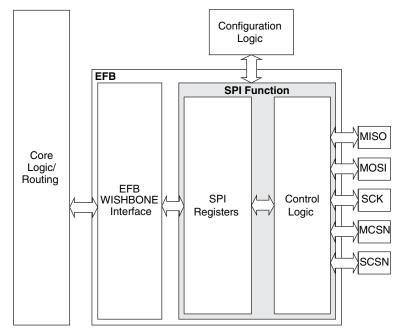


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description
spi_csn[0]	0	Master	SPI master chip-select output
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)
spi_scsn	I	Slave	SPI slave chip-select input
spi_irq	0	Master/Slave	Interrupt request
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.

Hardened Timer/Counter

MachXO2 devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions:

- Supports the following modes of operation:
 - Watchdog timer
 - Clear timer on compare match
 - Fast PWM
 - Phase and Frequency Correct PWM
- Programmable clock input source
- Programmable input clock prescaler
- One static interrupt output to routing
- One wake-up interrupt to on-chip standby mode controller.
- Three independent interrupt sources: overflow, output compare match, and input capture
- Auto reload
- Time-stamping support on the input capture unit
- Waveform generation on the output
- Glitch-free PWM waveform generation with variable PWM period
- Internal WISHBONE bus access to the control and status registers
- · Stand-alone mode with preloaded control registers and direct reset input

Figure 2-23. Timer/Counter Block Diagram

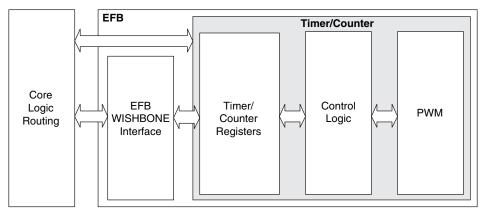


Table 2-17. Timer/Counter Signal Description

Port	I/O	Description
tc_clki	I	Timer/Counter input clock signal
tc_rstn	I	Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled
tc_ic	I	Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping.
tc_int	0	Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers
tc_oc	0	Timer counter output signal

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, ana- log circuitry such as the POR, PLLs, on-chip oscillator, and referenced and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Referenced and differential I/O buffers (used to implement standards such as HSTL, SSTL and LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Power On Reset

MachXO2 devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO0} (controls configuration) voltage levels. It then triggers download from the on-chip configuration Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For devices without voltage regulators (ZE and HE devices), V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators (HC devices), V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as Flash Download Time (t_{REFRESH}) in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tristate. I/Os are released to user functionality once the device has finished configuration. Note that for HC devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once a ZE or HE device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a minimal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

Static Supply Current – ZE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ. ⁴	Units
		LCMXO2-256ZE	18	μΑ
		LCMXO2-640ZE	28	μΑ
I _{CC}	Core Power Supply	LCMXO2-1200ZE	56	μΑ
		LCMXO2-2000ZE	80	μA
		LCMXO2-4000ZE	124	μΑ
		LCMXO2-7000ZE	189	μΑ
I _{CCIO}	Bank Power Supply ⁵ $V_{CCIO} = 2.5 V$	All devices	1	μΑ

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Static Power Consumption Contribution of Different Components – ZE Devices

The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool.

Symbol	Parameter	Тур.	Units
I _{DCBG}	Bandgap DC power contribution	101	μΑ
IDCPOR	POR DC power contribution	38	μΑ
IDCIOBANKCONTROLLER	DC power contribution per I/O bank controller	143	μA

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)				
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.			
LVCMOS 3.3	3.135	3.3	3.6	—	—	—			
LVCMOS 2.5	2.375	2.5	2.625	—	—	—			
LVCMOS 1.8	1.71	1.8	1.89	—	—	—			
LVCMOS 1.5	1.425	1.5	1.575	—	—	—			
LVCMOS 1.2	1.14	1.2	1.26	—	—	_			
LVTTL	3.135	3.3	3.6	—	—	—			
PCI ³	3.135	3.3	3.6	—	—	—			
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35			
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969			
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08			
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4			
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05			
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05			
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9			
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9			
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75			
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75			
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65			
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65			
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_			
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—			
LVPECL ¹	3.135	3.3	3.6	—	—	—			
BLVDS ¹	2.375	2.5	2.625	—	—	—			
RSDS ¹	2.375	2.5	2.625	—	—	—			
SSTL18D	1.71	1.8	1.89	—	—	—			
SSTL25D	2.375	2.5	2.625	—	—				
HSTL18D	1.71	1.8	1.89	—	—	—			

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.

3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

MAX_PRI Tree	Description	Device All MachXO2 devices	Min.	Max.	Min.	Max.	Min.	Max.	Units
Frimary Clocks f _{MAX_PRI} [®] Frequer Tree turner Clock P		All MachXO2 devices							
f _{MAX_PRI} ⁸ Frequer Tree Clock P		All MachXO2 devices							
Tree turner turner		All MachXO2 devices							
	ulse Width for Primary		_	150	_	125	_	104	MHz
		All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	_	1250	_	1272	_	1296	ps
		MachXO2-640ZE		1161	_	1183	_	1206	ps
. Primarv	Clock Skew Within a	MachXO2-1200ZE		1213	_	1267	_	1322	ps
t _{SKEW_PRI} Device		MachXO2-2000ZE	_	1204	_	1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	_	1269	ps
		MachXO2-7000ZE	_	1243	_	1268	—	1296	ps
Edge Clock		1	I	L		L		L	
f _{MAX_EDGE⁸ Frequer}	ncy for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin Propaga	tion Delay								
t _{PD} Best ca through	se propagation delay one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O Pin Parar	meters (Using Primary	Clock without PLL)							
		MachXO2-256ZE		10.46		10.86		11.25	ns
		MachXO2-640ZE		10.52		10.92		11.32	ns
L Clock to	o Output – PIO Output	MachXO2-1200ZE	_	11.24	_	11.68	_	12.12	ns
t _{CO} Registe		MachXO2-2000ZE	_	11.27		11.71		12.16	ns
		MachXO2-4000ZE	_	11.28		11.78		12.28	ns
		MachXO2-7000ZE	_	11.22	_	11.76	_	12.30	ns
		MachXO2-256ZE	-0.21		-0.21		-0.21	_	ns
		MachXO2-640ZE	-0.22		-0.22		-0.22	_	ns
L Clock to	Data Setup – PIO	MachXO2-1200ZE	-0.25		-0.25		-0.25		ns
t _{SU} Input Re		MachXO2-2000ZE	-0.27		-0.27		-0.27		ns
		MachXO2-4000ZE	-0.31		-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33		-0.33		-0.33	_	ns
		MachXO2-256ZE	3.96	—	4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01	_	4.31	_	4.71	_	ns
Lock to	Data Hold – PIO Input	MachXO2-1200ZE	3.95	_	4.29	_	4.73	_	ns
t _H Registe		MachXO2-2000ZE	3.94	_	4.29	_	4.74	_	ns
		MachXO2-4000ZE	3.96	_	4.36	_	4.87	_	ns
		MachXO2-7000ZE	3.93	_	4.37		4.91	_	ns

Over Recommended Operating Conditions

				3		2		1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256ZE	2.62	—	2.91	—	3.14	—	ns
		MachXO2-640ZE	2.56	—	2.85	—	3.08	—	ns
t _{SU_DEL} Ir	Clock to Data Setup – PIO	MachXO2-1200ZE	2.30		2.57		2.79		ns
	Input Register with Data Input Delay	MachXO2-2000ZE	2.25	—	2.50	—	2.70	—	ns
		MachXO2-4000ZE	2.39	—	2.60	—	2.76	—	ns
		MachXO2-7000ZE	2.17	—	2.33	—	2.43	—	ns
		MachXO2-256ZE	-0.44	—	-0.44	—	-0.44	—	ns
		MachXO2-640ZE	-0.43	—	-0.43	—	-0.43	—	ns
	Clock to Data Hold – PIO Input	MachXO2-1200ZE	-0.28	—	-0.28	—	-0.28	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-4000ZE	-0.34	_	-0.34		-0.34		ns
		MachXO2-7000ZE	-0.21	_	-0.21		-0.21		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices		150	_	125	_	104	MHz
General I/O	Pin Parameters (Using Edge Cl	ock without PLL)		1	1	1	1	1	1
		MachXO2-1200ZE	_	11.10		11.51		11.91	ns
	Clock to Output – PIO Output Register	MachXO2-2000ZE	_	11.10	—	11.51	—	11.91	ns
t _{COE}		MachXO2-4000ZE	_	10.89	_	11.28	_	11.67	ns
		MachXO2-7000ZE		11.10		11.51		11.91	ns
	Clock to Data Setup – PIO Input Register	MachXO2-1200ZE	-0.23		-0.23		-0.23		ns
		MachXO2-2000ZE	-0.23		-0.23		-0.23		ns
t _{SUE}		MachXO2-4000ZE	-0.15		-0.15		-0.15		ns
		MachXO2-7000ZE	-0.23		-0.23		-0.23		ns
		MachXO2-1200ZE	3.81		4.11		4.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	3.81		4.11		4.52		ns
t _{HE}	Register	MachXO2-4000ZE	3.60		3.89		4.28		ns
	3	MachXO2-7000ZE	3.81		4.11		4.52		ns
		MachXO2-1200ZE	2.78		3.11		3.40		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	2.78		3.11		3.40		ns
t _{SU_DELE}	Input Register with Data Input	MachXO2-4000ZE	3.11		3.48		3.79		ns
	Delay	MachXO2-7000ZE	2.94		3.30		3.60		ns
		MachXO2-1200ZE	-0.29		-0.29		-0.29		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-0.29		-0.29		-0.29		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000ZE	-0.46	_	-0.46		-0.46		ns
		MachXO2-7000ZE	-0.37		-0.37		-0.37		ns
General I/O	Pin Parameters (Using Primary		0.07		0.07		0.07		
Generalizer		MachXO2-1200ZE	_	7.95	_	8.07	_	8.19	ns
		MachXO2-2000ZE		7.97	_	8.10	_	8.22	ns
t _{COPLL}	Clock to Output – PIO Output Register	MachXO2-4000ZE		7.98		8.10		8.23	ns
	Ĭ	MachXO2-4000ZE		8.02	_	8.14		8.26	ns
		MachXO2-1200ZE	0.85	0.02	0.85	0.14	0.89	0.20	ns
		MachXO2-1200ZE	0.85		0.85		0.89		
t _{SUPLL}	Clock to Data Setup – PIO Input Register	MachXO2-2000ZE	0.84		0.84		0.85		ns
								_	ns
		MachXO2-7000ZE	0.83		0.83		0.81		ns

Figure 3-9. GDDR71 Video Timing Waveforms

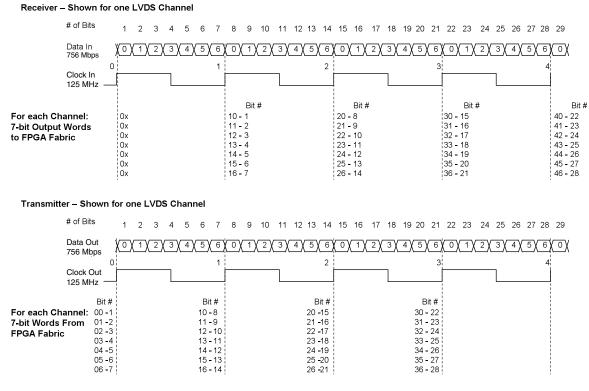


Figure 3-10. Receiver GDDR71_RX. Waveforms

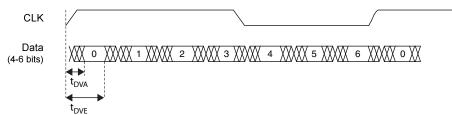
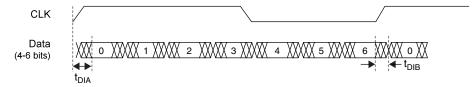



Figure 3-11. Transmitter GDDR71_TX. Waveforms

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz
fout	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz
fout2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz
f _{VCO}	PLL VCO Frequency		200	800	MHz
f _{PFD}	Phase Detector Input Frequency		7	400	MHz
AC Characteri	stics	•			
t _{DT}	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%
t _{DT_TRIM} ⁷	Edge Duty Trim Accuracy		-75	75	%
t _{PH} ⁴	Output Phase Accuracy		-6	6	%
	Output Clask Daviad Litter	f _{OUT} > 100 MHz	—	150	ps p-p
	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP
	Output Olaski Ousla ta susla littari	f _{OUT} > 100 MHz	—	180	ps p-p
	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	—	0.009	UIPP
. 18		f _{PFD} > 100 MHz	—	160	ps p-p
t _{OPJIT} ^{1,8}	Output Clock Phase Jitter	f _{PFD} < 100 MHz	—	0.011	UIPP
		f _{OUT} > 100 MHz	—	230	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p
	(Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9	—	ns
tLOCK ^{2, 5}	PLL Lock-in Time		—	15	ms
t _{UNLOCK}	PLL Unlock Time		—	50	ns
. 6	Innut Clask Daviad Littar	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p
t _{IPJIT} ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{STABLE} ⁵	STANDBY High to PLL Stable		_	15	ms
t _{RST}	RST/RESETM Pulse Width		1		ns
t _{RSTREC}	RST Recovery Time		1		ns
t _{RST_DIV}	RESETC/D Pulse Width		10		ns
t _{RSTREC_DIV}	RESETC/D Recovery Time		1		ns
t _{ROTATE-SETUP}	PHASESTEP Setup Time		10		ns

Over Recommended Operating Conditions

For Further Information

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000ZE-1TG144C	6864	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-2TG144C	6864	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-3TG144C	6864	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-7000ZE-1BG256C	6864	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-2BG256C	6864	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-3BG256C	6864	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-7000ZE-1FTG256C	6864	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-2FTG256C	6864	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-3FTG256C	6864	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-7000ZE-1BG332C	6864	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-2BG332C	6864	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-3BG332C	6864	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-7000ZE-1FG484C	6864	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-2FG484C	6864	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-7000ZE-3FG484C	6864	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100CR11	1280	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-2TG100CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-3TG100CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-1MG132CR11	1280	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-2MG132CR1 ¹	1280	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-3MG132CR1 ¹	1280	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-1TG144CR1 ¹	1280	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-2TG144CR1 ¹	1280	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-3TG144CR1 ¹	1280	1.2 V	-3	Halogen-Free TQFP	144	COM

1. Specifications for the "LCMXO2-1200ZE-speed package CR1" are the same as the "LCMXO2-1200ZE-speed package C" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484C	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-5FG484C	2112	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-6FG484C	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84C	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	COM
LCMXO2-4000HC-5QN84C	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	COM
LCMXO2-4000HC-6QN84C	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	COM
LCMXO2-4000HC-4MG132C	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-5MG132C	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-6MG132C	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-4TG144C	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-5TG144C	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-6TG144C	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-4BG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-5BG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-6BG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-4FTG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-5FTG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-6FTG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-4BG332C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-5BG332C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-6BG332C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-4FG484C	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-5FG484C	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-6FG484C	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84I	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	IND
LCMXO2-4000HC-5QN84I	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	IND
LCMXO2-4000HC-6QN84I	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	IND
LCMXO2-4000HC-4TG144I	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-5TG144I	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-6TG144I	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-4000HC-4MG132I	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-5MG132I	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-6MG132I	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-4000HC-4BG256I	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-5BG256I	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-6BG256I	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-4000HC-4FTG256I	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-5FTG256I	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-6FTG256I	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-4000HC-4BG332I	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-5BG332I	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-6BG332I	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-4000HC-4FG484I	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-4000HC-5FG484I	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-4000HC-6FG484I	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HC-4TG144I	6864	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-5TG144I	6864	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-6TG144I	6864	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-7000HC-4BG256I	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-5BG256I	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-6BG256I	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-7000HC-4FTG256I	6864	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-5FTG256I	6864	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-6FTG256I	6864	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-7000HC-4BG332I	6864	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-5BG332I	6864	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-6BG332I	6864	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-7000HC-4FG400I	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-5FG400I	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-6FG400I	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	400	IND
LCMXO2-7000HC-4FG484I	6864	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-7000HC-5FG484I	6864	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-7000HC-6FG484I	6864	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100IR11	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132IR1 ¹	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200HC-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.