E · / Fattice Semiconductor Corporation - <u>LCMXO2-4000HE-6FG484C Datasheet</u>

Welcome to E-XFL.COM

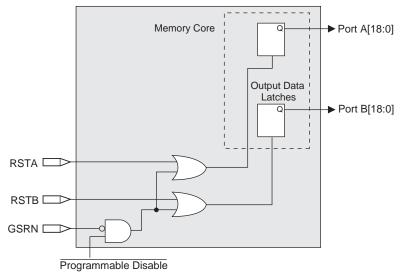
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	278
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-4000he-6fg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-9. Memory Core Reset

For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices.

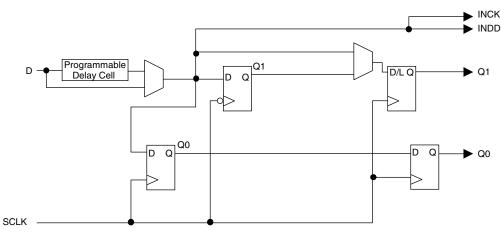
EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous.

Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

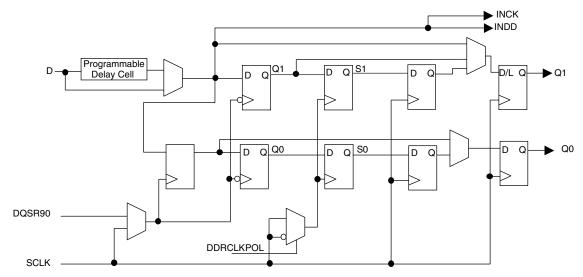
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.


If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

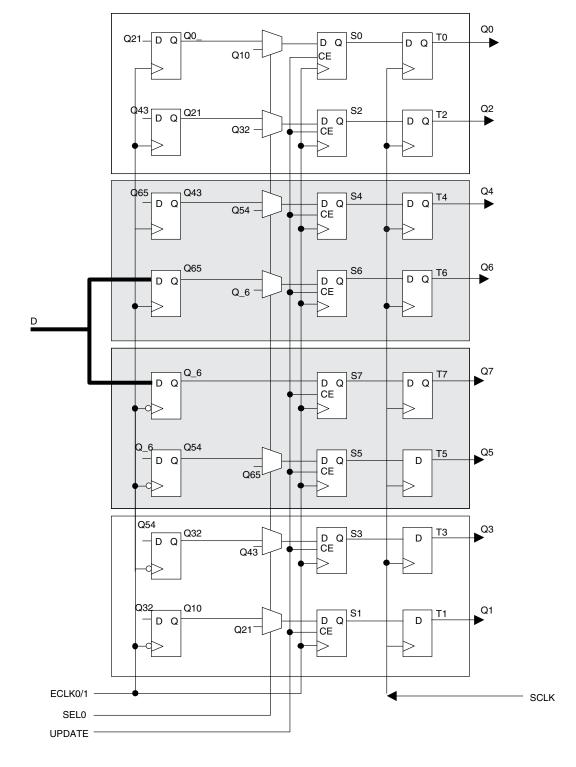


Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

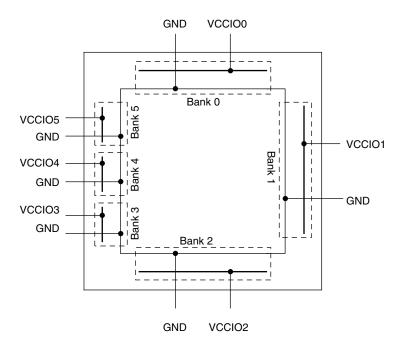
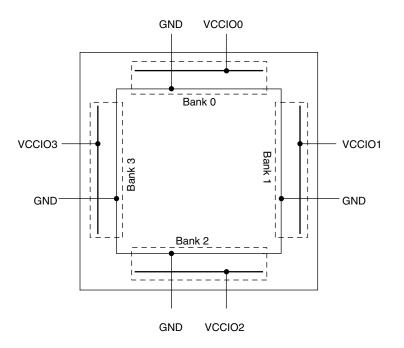



Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

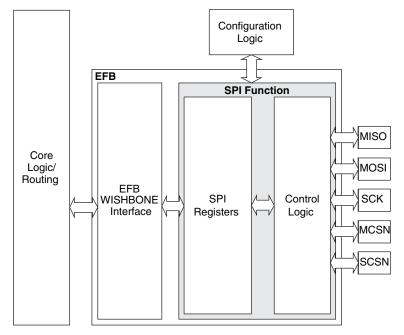


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description		
spi_csn[0]	0	Master	SPI master chip-select output		
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)		
spi_scsn	I	Slave	SPI slave chip-select input		
spi_irq	0	Master/Slave	Interrupt request		
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.		
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.		
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.		
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).		
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.		
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.		

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
I _{CC}		LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
	Core Power Supply	LCMXO2-1200ZE	15	mA
	Core Fower Supply	LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
ICCIO	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. TJ = 25 °C, power supplies at nominal voltage.

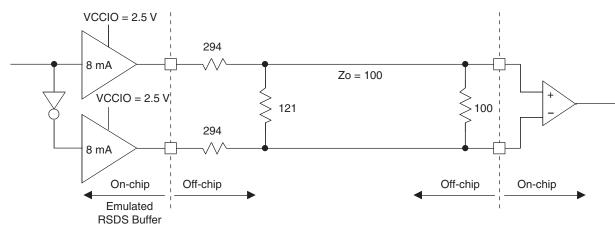
6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.6	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	_
LVTTL	3.135	3.3	3.6	—	—	—
PCI ³	3.135	3.3	3.6	—	—	—
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—
LVPECL ¹	3.135	3.3	3.6	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
RSDS ¹	2.375	2.5	2.625	—	—	—
SSTL18D	1.71	1.8	1.89	—	—	—
SSTL25D	2.375	2.5	2.625	—	—	
HSTL18D	1.71	1.8	1.89	—	—	—

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.


3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

RSDS

The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

Typical Building Block Function Performance – HC/HE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units
Basic Functions		
16-bit decoder	13.9	ns
4:1 MUX	10.9	ns
16:1 MUX	12.0	ns

Register-to-Register Performance

–3 Timing	Units
191	MHz
134	MHz
148	MHz
77	MHz
90	MHz
214	MHz
	191 134 148 77 90

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

MachXO2 External Switching Characteristics – HC/HE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	6	-	5	-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Clo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	388	_	323	_	269	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	0.5	_	0.6	_	0.7	_	ns
		MachXO2-256HC-HE		912		939	—	975	ps
		MachXO2-640HC-HE		844		871	—	908	ps
	Primary Clock Skew Within a	MachXO2-1200HC-HE		868		902	—	951	ps
t _{SKEW_PRI}	Device	MachXO2-2000HC-HE		867		897	—	941	ps
		MachXO2-4000HC-HE	_	865		892	—	931	ps
		MachXO2-7000HC-HE	_	902		942	—	989	ps
Edge Clock									1
f _{MAX_EDGE} ⁸	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	400	_	333	_	278	MHz
Pin-LUT-Pin	Propagation Delay	I			1				
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	6.72	_	6.96	_	7.24	ns
General I/O	Pin Parameters (Using Primary	y Clock without PLL)			1				
		MachXO2-256HC-HE		7.13		7.30		7.57	ns
		MachXO2-640HC-HE		7.15		7.30	—	7.57	ns
	Clock to Output – PIO Output	MachXO2-1200HC-HE		7.44		7.64		7.94	ns
t _{co}	Register	MachXO2-2000HC-HE		7.46		7.66		7.96	ns
		MachXO2-4000HC-HE		7.51		7.71	—	8.01	ns
		MachXO2-7000HC-HE		7.54		7.75		8.06	ns
		MachXO2-256HC-HE	-0.06		-0.06		-0.06	_	ns
		MachXO2-640HC-HE	-0.06		-0.06	_	-0.06	_	ns
	Clock to Data Setup – PIO	MachXO2-1200HC-HE	-0.17		-0.17	_	-0.17	_	ns
t _{SU}	Input Register	MachXO2-2000HC-HE	-0.20		-0.20	_	-0.20	_	ns
		MachXO2-4000HC-HE	-0.23	_	-0.23	_	-0.23	_	ns
		MachXO2-7000HC-HE	-0.23	_	-0.23	_	-0.23	_	ns
		MachXO2-256HC-HE	1.75	—	1.95	—	2.16	—	ns
		MachXO2-640HC-HE	1.75	_	1.95	_	2.16	_	ns
	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	1.88	_	2.12	_	2.36	_	ns
t _H	Register	MachXO2-2000HC-HE	1.89	_	2.13	_	2.37	_	ns
		MachXO2-4000HC-HE	1.94		2.18		2.43	_	ns
		MachXO2-7000HC-HE	1.98	_	2.23	_	2.49	_	ns

Over Recommended Operating Conditions

				3		2		1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256ZE	2.62	—	2.91	—	3.14	—	ns
		MachXO2-640ZE	2.56	—	2.85	—	3.08	—	ns
t _{SU_DEL}		MachXO2-1200ZE	2.30		2.57		2.79		ns
	Delay	MachXO2-2000ZE	2.25	—	2.50	—	2.70	—	ns
		MachXO2-4000ZE	2.39	—	2.60	—	2.76	—	ns
		MachXO2-7000ZE	2.17	—	2.33	—	2.43	—	ns
		MachXO2-256ZE	-0.44	—	-0.44	—	-0.44	—	ns
		MachXO2-640ZE	-0.43	—	-0.43	—	-0.43	—	ns
	Clock to Data Hold – PIO Input	MachXO2-1200ZE	-0.28	—	-0.28	—	-0.28	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-4000ZE	-0.34	_	-0.34		-0.34		ns
		MachXO2-7000ZE	-0.21	_	-0.21		-0.21		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices		150	_	125	_	104	MHz
General I/O	Pin Parameters (Using Edge Cl	ock without PLL)		1	1	1	1	1	1
		MachXO2-1200ZE	_	11.10		11.51		11.91	ns
	Clock to Output – PIO Output Register	MachXO2-2000ZE	_	11.10	—	11.51	—	11.91	ns
t _{COE}		MachXO2-4000ZE	_	10.89	_	11.28	_	11.67	ns
		MachXO2-7000ZE		11.10		11.51		11.91	ns
	Clock to Data Setup – PIO Input Register	MachXO2-1200ZE	-0.23		-0.23		-0.23		ns
		MachXO2-2000ZE	-0.23		-0.23		-0.23		ns
t _{SUE}		MachXO2-4000ZE	-0.15		-0.15		-0.15		ns
		MachXO2-7000ZE	-0.23		-0.23		-0.23		ns
		MachXO2-1200ZE	3.81		4.11		4.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	3.81		4.11		4.52		ns
t _{HE}	Register	MachXO2-4000ZE	3.60		3.89		4.28		ns
		MachXO2-7000ZE	3.81		4.11		4.52		ns
		MachXO2-1200ZE	2.78		3.11		3.40		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	2.78		3.11		3.40		ns
t _{SU_DELE}	Input Register with Data Input	MachXO2-4000ZE	3.11		3.48		3.79		ns
	Delay	MachXO2-7000ZE	2.94		3.30		3.60		ns
		MachXO2-1200ZE	-0.29		-0.29		-0.29		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-0.29		-0.29		-0.29		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000ZE	-0.46	_	-0.46		-0.46		ns
		MachXO2-7000ZE	-0.37		-0.37		-0.37		ns
General I/O	Pin Parameters (Using Primary		0.07		0.07		0.07		
Generalizer		MachXO2-1200ZE	_	7.95	_	8.07	_	8.19	ns
		MachXO2-2000ZE		7.97	_	8.10	_	8.22	ns
t _{COPLL}	Clock to Output – PIO Output Register	MachXO2-4000ZE		7.98		8.10		8.23	ns
	Ĭ	MachXO2-4000ZE		8.02	_	8.14		8.26	ns
		MachXO2-1200ZE	0.85	0.02	0.85	0.14	0.89	0.20	ns
		MachXO2-1200ZE	0.85		0.85		0.89		
t _{SUPLL}	Clock to Data Setup – PIO Input Register	MachXO2-2000ZE	0.84		0.84		0.85		ns
								_	ns
		MachXO2-7000ZE	0.83		0.83		0.81		ns

			-	-3	-	-2	- 1	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200ZE	0.66		0.68		0.80		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	0.68	—	0.70	—	0.83	—	ns
t _{HPLL}	Register	MachXO2-4000ZE	0.68	—	0.71	—	0.84	—	ns
		MachXO2-7000ZE	0.73	—	0.74	—	0.87	—	ns
-		MachXO2-1200ZE	5.14	—	5.69	—	6.20	—	ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	5.11	—	5.67	—	6.17	—	ns
^t SU_DELPLL	Input Register with Data Input Delay	MachXO2-4000ZE	5.27	—	5.84		6.35	—	ns
		MachXO2-7000ZE	5.15	—	5.71	—	6.23	—	ns
-		MachXO2-1200ZE	-1.36	—	-1.36	—	-1.36	—	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-1.35		-1.35		-1.35		ns
^t H_DELPLL		MachXO2-4000ZE	-1.43		-1.43		-1.43		ns
		MachXO2-7000ZE	-1.41		-1.41		-1.41		ns
Generic DDR	X1 Inputs with Clock and Data A	ligned at Pin Using P	CLK Pin	for Cloc	k Input -	- GDDR)	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.382		0.401	—	0.417	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2	0.670	—	0.684		0.693	—	UI
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X1 Inputs with Clock and Data Ce	entered at Pin Using PO	LK Pin f	for Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		1.319		1.412		1.462		ns
t _{HO}	Input Data Hold After CLK	All MachXO2	0.717	_	1.010		1.340		ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X2 Inputs with Clock and Data A	ligned at Pin Using P	LK Pin	for Cloc	k Input -	GDDR	2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.361		0.346	—	0.334	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.602		0.625		0.648		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	140		117	—	97	MHz
f _{SCLK}	SCLK Frequency		_	70		59	—	49	MHz
	X2 Inputs with Clock and Data Ce	entered at Pin Using P	LK Pin f	for Clock	Input –	GDDRX	2_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.472		0.672		0.865		ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.363	_	0.501		0.743		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-0400, MachXO2-1200/U and larger devices,		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		140		117	_	97	MHz
f _{SCLK}	SCLK Frequency			70		59	_	49	MHz
	4 Inputs with Clock and Data A	ligned at Pin Using PC	LK Pin	for Cloc	k Input -	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		_	0.307		0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.662		0.650		0.649	_	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	—	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	_	210		176	_	146	MHz
f _{SCLK}	SCLK Frequency		<u> </u>	53	_	44	—	37	MHz
JULIN		I	1				I		

MachXO2 Family Data Sheet Pinout Information

March 2017

Data Sheet DS1035

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B/C/D] indicates the PIO within the group to which the pad is connected.
P[Edge] [Row/Column Number]_[A/B/C/D]	I/O	Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased.
NC	—	No connect.
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. For QFN 48 package, the exposed die pad is the device ground.
VCC	_	V_{CC} – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIOx	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Clock Function	ons (Us	ed as user-programmable I/O pins when not used for PLL or clock pins)
[LOC]_GPLL[T, C]_IN	_	Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
[LOC]_GPLL[T, C]_FB	_	Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement.
PCLK [n]_[2:0]	—	Primary Clock pads. One to three clock pads per side.
Test and Programming	g (Dual f	function pins used for test access port and during sysCONFIG™)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin – Test Data output pin used to shift data out of the device using 1149.1.
		Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then:
JTAGENB	I	If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O.
		If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins.
		For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.
Configuration (Dual fu	nction p	ins used during sysCONFIG)
PROGRAMN	I	Initiates configuration sequence when asserted low. During configuration, or when reserved as PROGRAMN in user mode, this pin always has an active pull-up.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484C	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-5FG484C	2112	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-6FG484C	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84C	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	COM
LCMXO2-4000HC-5QN84C	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	COM
LCMXO2-4000HC-6QN84C	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	COM
LCMXO2-4000HC-4MG132C	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-5MG132C	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-6MG132C	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-4TG144C	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-5TG144C	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-6TG144C	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-4BG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-5BG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-6BG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-4FTG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-5FTG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-6FTG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-4BG332C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-5BG332C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-6BG332C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-4FG484C	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-5FG484C	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-6FG484C	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4SG32I	1280	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-1200HC-5SG32I	1280	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-1200HC-6SG32I	1280	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-1200HC-4TG100I	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100I	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100I	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132I	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132I	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132I	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144I	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144I	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144I	1280	2.5 V/ 3.3 V	-6	Halogen-Free TQFP	144	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200UHC-4FTG256I	1280	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-1200UHC-5FTG256I	1280	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-1200UHC-6FTG256I	1280	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HC-4TG100I	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-5TG100I	2112	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-6TG100I	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HC-4MG132I	2112	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-5MG132I	2112	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-6MG132I	2112	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HC-4TG144I	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-5TG144I	2112	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-6TG144I	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HC-4BG256I	2112	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-5BG256I	2112	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-6BG256I	2112	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HC-4FTG256I	2112	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HC-5FTG256I	2112	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HC-6FTG256I	2112	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484I	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHC-5FG484I	2112	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHC-6FG484I	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	IND

R1 Device Specifications

The LCMXO2-1200ZE/HC "R1" devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices.

- The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I²C ports.
- The on-chip differential input termination resistor value is higher than intended. It is approximately 200Ω as opposed to the intended 100Ω. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software.
- Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result.
- Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details:

Condition	Clamp	Pad Rising IIH Max.	Pad Falling IIH Min.	Steady State Pad High IIH	Steady State Pad Low IIL
VPAD > VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD = VCCIO	ON	10 µA	–10 μA	10 µA	10 µA
VPAD = VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD < VCCIO	OFF	10 µA	–10 μA	10 µA	10 µA

- The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt.
- In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization.
- When using the hard I²C IP core, the I²C status registers I2C_1_SR and I2C_2_SR may not update correctly.
- PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10 μsec before returning low.
- Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3 V or 2.5 V supply.

MachXO2 Family Data Sheet Revision History

March 2017

Data Sheet DS1035

Date	Version	Section	Change Summary
March 2017	3.3	DC and Switching Characteristics	Updated the Absolute Maximum Ratings section. Added standards.
			Updated the sysIO Recommended Operating Conditions section. Added standards.
			Updated the sysIO Single-Ended DC Electrical Characteristics sec- tion. Added standards.
			Updated the MachXO2 External Switching Characteristics – HC/HE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the MachXO2 External Switching Characteristics – ZE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the sysCONFIG Port Timing Specifications section. Corrected the t_{INITL} units from ns to μ s.
		Pinout Information	Updated the Signal Descriptions section. Revised the descriptions of the PROGRAMN, INITN, and DONE signals.
			Updated the Pinout Information Summary section. Added footnote to MachXO2-1200 32 QFN.
		Ordering Information	Updated the MachXO2 Part Number Description section. Corrected the MG184, BG256, FTG256 package information. Added "(0.8 mm Pitch)" to BG332.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. — Updated LCMXO2-1200ZE-1UWG25ITR50 footnote. — Corrected footnote numbering typo. — Added the LCMXO2-2000ZE-1UWG49ITR50 and LCMXO2- 2000ZE-1UWG49ITR1K part numbers. Updated/added footnote/s.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2012	01.7	All	Updated document with new corporate logo.
	01.6	—	Data sheet status changed from preliminary to final.
		Introduction	MachXO2 Family Selection Guide table – Removed references to 49-ball WLCSP.
		DC and Switching Characteristics	Updated Flash Download Time table.
			Modified Storage Temperature in the Absolute Maximum Ratings section.
			Updated I _{DK} max in Hot Socket Specifications table.
			Modified Static Supply Current tables for ZE and HC/HE devices.
			Updated Power Supply Ramp Rates table.
			Updated Programming and Erase Supply Current tables.
			Updated data in the External Switching Characteristics table.
			Corrected Absolute Maximum Ratings for Dedicated Input Voltage Applied for LCMXO2 HC.
			DC Electrical Characteristics table – Minor corrections to conditions for $\mathbf{I}_{IL}, \mathbf{I}_{IH.}$
		Pinout Information	Removed references to 49-ball WLCSP.
			Signal Descriptions table – Updated description for GND, VCC, and VCCIOx.
			Updated Pin Information Summary table – Number of VCCIOs, GNDs, VCCs, and Total Count of Bonded Pins for MachXO2-256, 640, and 640U and Dual Function I/O for MachXO2-4000 332caBGA.
		Ordering Information	Removed references to 49-ball WLCSP
August 2011	01.5	DC and Switching Characteristics	Updated ESD information.
		Ordering Information	Updated footnote for ordering WLCSP devices.
	01.4	Architecture	Updated information in Clock/Control Distribution Network and sys- CLOCK Phase Locked Loops (PLLs).
		DC and Switching Characteristics	Updated ${\rm I}_{\rm IL}$ and ${\rm I}_{\rm IH}$ conditions in the DC Electrical Characteristics table.
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Updated Pin Information Summary table: Dual Function I/O, DQS Groups Bank 1, Total General Purpose Single-Ended I/O, Differential I/O Per Bank, Total Count of Bonded Pins, Gearboxes.
			Added column of data for MachXO2-2000 49 WLCSP.
		Ordering Information	Updated R1 Device Specifications text section with information on migration from MachXO2-1200-R1 to Standard (non-R1) devices.
			Corrected Supply Voltage typo for part numbers: LCMX02-2000UHE- 4FG484I, LCMX02-2000UHE-5FG484I, LCMX02-2000UHE- 6FG484I.
			Added footnote for WLCSP package parts.
		Supplemental Information	Removed reference to Stand-alone Power Calculator for MachXO2 Devices. Added reference to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices.

Date	Version	Section	Change Summary
May 2011	01.3	Multiple	Replaced "SED" with "SRAM CRC Error Detection" throughout the document.
		DC and Switching Characteristics	Added footnote 1 to Program Erase Specifications table.
		Pinout Information	Updated Pin Information Summary tables.
			Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table.
April 2011	01.2	_	Data sheet status changed from Advance to Preliminary.
		Introduction	Updated MachXO2 Family Selection Guide table.
		Architecture	Updated Supported Input Standards table.
			Updated sysMEM Memory Primitives diagram.
			Added differential SSTL and HSTL IO standards.
		DC and Switching Characteristics	Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current.
			Added VREF specifications to sysIO recommended operating condi- tions.
			Updating timing information based on characterization.
			Added differential SSTL and HSTL IO standards.
		Ordering Information	Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages.
			Added R1 device specifications.
January 2011	01.1	All	Included ultra-high I/O devices.
		DC and Switching Characteristics	Recommended Operating Conditions table – Added footnote 3.
			DC Electrical Characteristics table – Updated data for $\rm I_{IL}, I_{IH}, V_{HYST}$ typical values updated.
			Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for T_{DIA} and T_{DIB} .
			Power-On-Reset Voltage Levels table - clarified note 3.
			Clarified VCCIO related recommended operating conditions specifications.
			Added power supply ramp rate requirements.
			Added Power Supply Ramp Rates table.
			Updated Programming/Erase Specifications table.
			Removed references to V _{CCP.}
		Pinout Information	Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.
			Removed references to V _{CCP.}
November 2010	01.0	—	Initial release.