# E · K Fattice Semiconductor Corporation - <u>LCMX02-4000ZE-1BG332I Datasheet</u>



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                           |
|--------------------------------|----------------------------------------------------------------------------------|
| Number of LABs/CLBs            | 540                                                                              |
| Number of Logic Elements/Cells | 4320                                                                             |
| Total RAM Bits                 | 94208                                                                            |
| Number of I/O                  | 274                                                                              |
| Number of Gates                | -                                                                                |
| Voltage - Supply               | 1.14V ~ 1.26V                                                                    |
| Mounting Type                  | Surface Mount                                                                    |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                               |
| Package / Case                 | 332-FBGA                                                                         |
| Supplier Device Package        | 332-CABGA (17x17)                                                                |
| Purchase URL                   | https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-4000ze-1bg332i |
|                                |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# MachXO2 Family Data Sheet Introduction

May 2016

# **Features**

- Flexible Logic Architecture
  - Six devices with 256 to 6864 LUT4s and 18 to 334 I/Os
- Ultra Low Power Devices
  - Advanced 65 nm low power process
  - As low as 22  $\mu$ W standby power
  - Programmable low swing differential I/Os
  - · Stand-by mode and other power saving options

#### Embedded and Distributed Memory

- Up to 240 kbits sysMEM™ Embedded Block RAM
- Up to 54 kbits Distributed RAM
- Dedicated FIFO control logic
- On-Chip User Flash Memory
  - Up to 256 kbits of User Flash Memory
  - 100,000 write cycles
  - Accessible through WISHBONE, SPI, I<sup>2</sup>C and JTAG interfaces
  - Can be used as soft processor PROM or as Flash memory

#### Pre-Engineered Source Synchronous I/O

- DDR registers in I/O cells
- Dedicated gearing logic
- 7:1 Gearing for Display I/Os
- Generic DDR, DDRX2, DDRX4
- Dedicated DDR/DDR2/LPDDR memory with DQS support

#### ■ High Performance, Flexible I/O Buffer

- Programmable syslO<sup>™</sup> buffer supports wide range of interfaces:
  - LVCMOS 3.3/2.5/1.8/1.5/1.2
  - LVTTL
  - PCI
  - LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL
  - SSTL 25/18
  - HSTL 18
  - Schmitt trigger inputs, up to 0.5 V hysteresis
- I/Os support hot socketing
- On-chip differential termination
- · Programmable pull-up or pull-down mode

- Flexible On-Chip Clocking
  - · Eight primary clocks
  - Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only)
  - Up to two analog PLLs per device with fractional-n frequency synthesis
    - Wide input frequency range (7 MHz to 400 MHz)

Data Sheet DS1035

- Non-volatile, Infinitely Reconfigurable
  - Instant-on powers up in microseconds
  - Single-chip, secure solution
  - Programmable through JTAG, SPI or I<sup>2</sup>C
  - Supports background programming of non-volatile memory
  - Optional dual boot with external SPI memory
- TransFR<sup>™</sup> Reconfiguration
  - In-field logic update while system operates

#### Enhanced System Level Support

- On-chip hardened functions: SPI, I<sup>2</sup>C, timer/ counter
- On-chip oscillator with 5.5% accuracy
- Unique TraceID for system tracking
- One Time Programmable (OTP) mode
- Single power supply with extended operating range
- IEEE Standard 1149.1 boundary scan
- IEEE 1532 compliant in-system programming
- Broad Range of Package Options
  - TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options
  - Small footprint package options
     As small as 2.5 mm x 2.5 mm
  - · Density migration supported
  - Advanced halogen-free packaging



# Introduction

The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I<sup>2</sup>C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

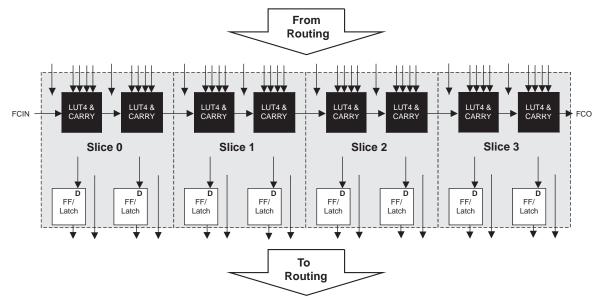
The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external V<sub>CC</sub> supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external V<sub>CC</sub> supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other.

The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.


The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I<sup>2</sup>C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE<sup>™</sup> modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.



# Figure 2-3. PFU Block Diagram



### Slices

Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

|         | PFU Block               |                         |  |  |  |  |  |
|---------|-------------------------|-------------------------|--|--|--|--|--|
| Slice   | Resources               | Modes                   |  |  |  |  |  |
| Slice 0 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM |  |  |  |  |  |
| Slice 1 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM |  |  |  |  |  |
| Slice 2 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM |  |  |  |  |  |
| Slice 3 | 2 LUT4s and 2 Registers | Logic, Ripple, ROM      |  |  |  |  |  |

Table 2-1. Resources and Modes Available per Slice

Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3.



# Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

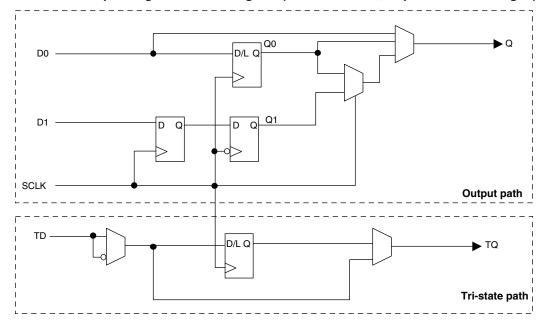
On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.



# **Output Register Block**

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.


#### Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-14 shows the output register block on the left, top and bottom edges.

Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)



#### **Right Edge**

The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges.

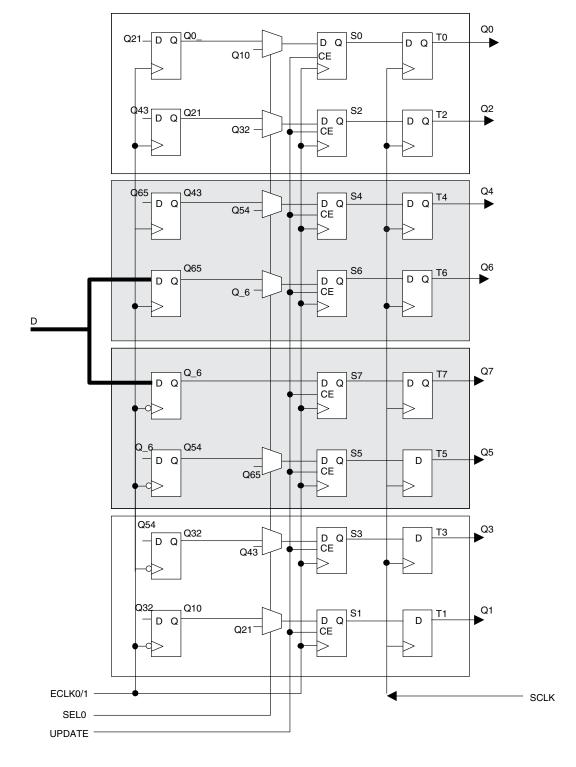

In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-15 shows the output register block on the right edge.



These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

#### Figure 2-16. Input Gearbox





#### Figure 2-21. PC Core Block Diagram

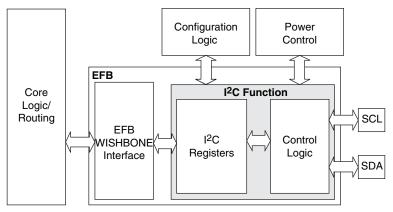



Table 2-15 describes the signals interfacing with the I<sup>2</sup>C cores.

 Table 2-15.
 PC Core Signal Description

| Signal Name | I/O            | Description                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i2c_scl     | Bi-directional | Bi-directional clock line of the I <sup>2</sup> C core. The signal is an output if the I <sup>2</sup> C core is in master mode. The signal is an input if the I <sup>2</sup> C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I <sup>2</sup> C ports in each MachXO2 device.                |
| i2c_sda     | Bi-directional | Bi-directional data line of the I <sup>2</sup> C core. The signal is an output when data is transmitted from the I <sup>2</sup> C core. The signal is an input when data is received into the I <sup>2</sup> C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I <sup>2</sup> C ports in each MachXO2 device. |
| i2c_irqo    | Output         | Interrupt request output signal of the I <sup>2</sup> C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I <sup>2</sup> C register definitions.                                                                                 |
| cfg_wake    | Output         | Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, $I^2C$ Tab.                                                                                                                                                                                                                                         |
| cfg_stdby   | Output         | Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, $I^2C$ Tab.                                                                                                                                                                                                                                        |

### Hardened SPI IP Core

Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface



When implementing background programming of the on-chip Flash, care must be taken for the operation of the PLL. For devices that have two PLLs (XO2-2000U, -4000 and -7000), the system must put the RPLL (Right-side PLL) in reset state during the background Flash programming. More detailed description can be found in TN1204, MachXO2 Programming and Configuration Usage Guide.

#### Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO2 devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile Flash memory spaces. The device can be in one of two modes:

- 1. Unlocked Readback of the SRAM configuration and non-volatile Flash memory spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash and SRAM OTP portions of the device. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

#### Dual Boot

MachXO2 devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the on-chip Flash. The golden image MUST reside in an external SPI Flash. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

#### Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1206, MachXO2 Soft Error Detection Usage Guide.

# TraceID

Each MachXO2 device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I<sup>2</sup>C, or JTAG interfaces.

# **Density Shifting**

The MachXO2 family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO2 migration files.

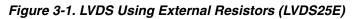


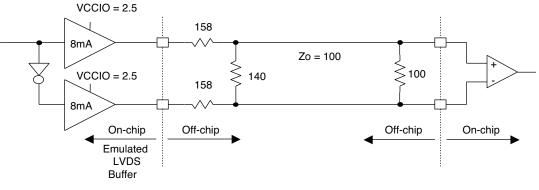
# sysIO Recommended Operating Conditions

|                        |       | V <sub>CCIO</sub> (V) |       |       | V <sub>REF</sub> (V) |       |
|------------------------|-------|-----------------------|-------|-------|----------------------|-------|
| Standard               | Min.  | Тур.                  | Max.  | Min.  | Тур.                 | Max.  |
| LVCMOS 3.3             | 3.135 | 3.3                   | 3.6   | —     | —                    | —     |
| LVCMOS 2.5             | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |
| LVCMOS 1.8             | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |
| LVCMOS 1.5             | 1.425 | 1.5                   | 1.575 | —     | —                    | —     |
| LVCMOS 1.2             | 1.14  | 1.2                   | 1.26  | —     | —                    | _     |
| LVTTL                  | 3.135 | 3.3                   | 3.6   | —     | —                    | —     |
| PCI <sup>3</sup>       | 3.135 | 3.3                   | 3.6   | —     | —                    | —     |
| SSTL25                 | 2.375 | 2.5                   | 2.625 | 1.15  | 1.25                 | 1.35  |
| SSTL18                 | 1.71  | 1.8                   | 1.89  | 0.833 | 0.9                  | 0.969 |
| HSTL18                 | 1.71  | 1.8                   | 1.89  | 0.816 | 0.9                  | 1.08  |
| LVCMOS25R33            | 3.135 | 3.3                   | 3.6   | 1.1   | 1.25                 | 1.4   |
| LVCMOS18R33            | 3.135 | 3.3                   | 3.6   | 0.75  | 0.9                  | 1.05  |
| LVCMOS18R25            | 2.375 | 2.5                   | 2.625 | 0.75  | 0.9                  | 1.05  |
| LVCMOS15R33            | 3.135 | 3.3                   | 3.6   | 0.6   | 0.75                 | 0.9   |
| LVCMOS15R25            | 2.375 | 2.5                   | 2.625 | 0.6   | 0.75                 | 0.9   |
| LVCMOS12R334           | 3.135 | 3.3                   | 3.6   | 0.45  | 0.6                  | 0.75  |
| LVCMOS12R254           | 2.375 | 2.5                   | 2.625 | 0.45  | 0.6                  | 0.75  |
| LVCMOS10R334           | 3.135 | 3.3                   | 3.6   | 0.35  | 0.5                  | 0.65  |
| LVCMOS10R254           | 2.375 | 2.5                   | 2.625 | 0.35  | 0.5                  | 0.65  |
| LVDS25 <sup>1, 2</sup> | 2.375 | 2.5                   | 2.625 | —     | —                    | _     |
| LVDS33 <sup>1, 2</sup> | 3.135 | 3.3                   | 3.6   | —     | —                    | —     |
| LVPECL <sup>1</sup>    | 3.135 | 3.3                   | 3.6   | —     | —                    | —     |
| BLVDS <sup>1</sup>     | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |
| RSDS <sup>1</sup>      | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |
| SSTL18D                | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |
| SSTL25D                | 2.375 | 2.5                   | 2.625 | —     | —                    |       |
| HSTL18D                | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.


3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.


4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.



# LVDS Emulation

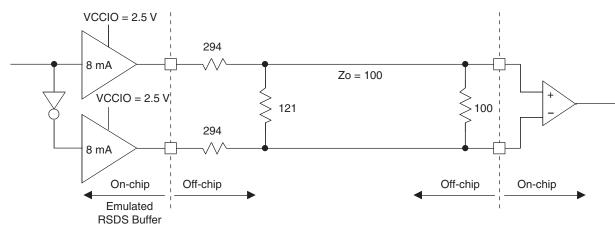
MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.





Note: All resistors are ±1%.

#### Table 3-1. LVDS25E DC Conditions


#### **Over Recommended Operating Conditions**

| <b>_</b>          |                             |       |       |  |  |  |  |  |  |  |
|-------------------|-----------------------------|-------|-------|--|--|--|--|--|--|--|
| Parameter         | Description                 | Тур.  | Units |  |  |  |  |  |  |  |
| Z <sub>OUT</sub>  | Output impedance            | 20    | Ohms  |  |  |  |  |  |  |  |
| R <sub>S</sub>    | Driver series resistor      | 158   | Ohms  |  |  |  |  |  |  |  |
| R <sub>P</sub>    | Driver parallel resistor    | 140   | Ohms  |  |  |  |  |  |  |  |
| R <sub>T</sub>    | Receiver termination        | 100   | Ohms  |  |  |  |  |  |  |  |
| V <sub>OH</sub>   | Output high voltage         | 1.43  | V     |  |  |  |  |  |  |  |
| V <sub>OL</sub>   | Output low voltage          | 1.07  | V     |  |  |  |  |  |  |  |
| V <sub>OD</sub>   | Output differential voltage | 0.35  | V     |  |  |  |  |  |  |  |
| V <sub>CM</sub>   | Output common mode voltage  | 1.25  | V     |  |  |  |  |  |  |  |
| Z <sub>BACK</sub> | Back impedance              | 100.5 | Ohms  |  |  |  |  |  |  |  |
| I <sub>DC</sub>   | DC output current           | 6.03  | mA    |  |  |  |  |  |  |  |



# RSDS

The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.



#### Figure 3-4. RSDS (Reduced Swing Differential Standard)

#### Table 3-4. RSDS DC Conditions

| Parameter         | Description                 | Typical | Units |
|-------------------|-----------------------------|---------|-------|
| Z <sub>OUT</sub>  | Output impedance            | 20      | Ohms  |
| R <sub>S</sub>    | Driver series resistor      | 294     | Ohms  |
| R <sub>P</sub>    | Driver parallel resistor    | 121     | Ohms  |
| R <sub>T</sub>    | Receiver termination        | 100     | Ohms  |
| V <sub>OH</sub>   | Output high voltage         | 1.35    | V     |
| V <sub>OL</sub>   | Output low voltage          | 1.15    | V     |
| V <sub>OD</sub>   | Output differential voltage | 0.20    | V     |
| V <sub>CM</sub>   | Output common mode voltage  | 1.25    | V     |
| Z <sub>BACK</sub> | Back impedance              | 101.5   | Ohms  |
| IDC               | DC output current           | 3.66    | mA    |



# MachXO2 External Switching Characteristics – HC/HE Devices<sup>1, 2, 3, 4, 5, 6, 7</sup>

|                                    |                                               |                                    | -     | 6    | _     | 5    | -     | 4    |       |
|------------------------------------|-----------------------------------------------|------------------------------------|-------|------|-------|------|-------|------|-------|
| Parameter                          | Description                                   | Device                             | Min.  | Max. | Min.  | Max. | Min.  | Max. | Units |
| Clocks                             |                                               |                                    |       |      |       |      |       |      |       |
| Primary Clo                        | ocks                                          |                                    |       |      |       |      |       |      |       |
| f <sub>MAX_PRI</sub> <sup>8</sup>  | Frequency for Primary Clock<br>Tree           | All MachXO2 devices                |       | 388  | _     | 323  | _     | 269  | MHz   |
| t <sub>W_PRI</sub>                 | Clock Pulse Width for Primary<br>Clock        | All MachXO2 devices                | 0.5   |      | 0.6   |      | 0.7   |      | ns    |
|                                    |                                               | MachXO2-256HC-HE                   | _     | 912  | —     | 939  | —     | 975  | ps    |
|                                    |                                               | MachXO2-640HC-HE                   |       | 844  |       | 871  |       | 908  | ps    |
|                                    | Primary Clock Skew Within a                   | MachXO2-1200HC-HE                  |       | 868  |       | 902  |       | 951  | ps    |
| <sup>t</sup> SKEW_PRI              | Device                                        | MachXO2-2000HC-HE                  |       | 867  |       | 897  |       | 941  | ps    |
|                                    |                                               | MachXO2-4000HC-HE                  |       | 865  | —     | 892  |       | 931  | ps    |
|                                    |                                               | MachXO2-7000HC-HE                  | —     | 902  | —     | 942  | —     | 989  | ps    |
| Edge Clock                         | 1                                             | 1                                  |       |      | I.    |      | 1     |      | L     |
| f <sub>MAX_EDGE</sub> <sup>8</sup> | Frequency for Edge Clock                      | MachXO2-1200 and<br>larger devices | _     | 400  | _     | 333  | _     | 278  | MHz   |
| Pin-LUT-Pin                        | Propagation Delay                             |                                    |       |      |       |      |       |      |       |
| t <sub>PD</sub>                    | Best case propagation delay through one LUT-4 | All MachXO2 devices                | _     | 6.72 | _     | 6.96 | _     | 7.24 | ns    |
| General I/O                        | Pin Parameters (Using Primar                  | y Clock without PLL)               |       |      |       |      | 1     |      |       |
|                                    |                                               | MachXO2-256HC-HE                   | _     | 7.13 | —     | 7.30 |       | 7.57 | ns    |
|                                    |                                               | MachXO2-640HC-HE                   |       | 7.15 | —     | 7.30 |       | 7.57 | ns    |
|                                    | Clock to Output – PIO Output                  | MachXO2-1200HC-HE                  | _     | 7.44 | —     | 7.64 | —     | 7.94 | ns    |
| t <sub>CO</sub>                    | Register                                      | MachXO2-2000HC-HE                  | _     | 7.46 | —     | 7.66 | —     | 7.96 | ns    |
|                                    |                                               | MachXO2-4000HC-HE                  |       | 7.51 | —     | 7.71 |       | 8.01 | ns    |
|                                    |                                               | MachXO2-7000HC-HE                  | _     | 7.54 | —     | 7.75 | —     | 8.06 | ns    |
|                                    |                                               | MachXO2-256HC-HE                   | -0.06 | _    | -0.06 |      | -0.06 |      | ns    |
|                                    |                                               | MachXO2-640HC-HE                   | -0.06 | _    | -0.06 | _    | -0.06 | _    | ns    |
|                                    | Clock to Data Setup – PIO                     | MachXO2-1200HC-HE                  | -0.17 | _    | -0.17 |      | -0.17 |      | ns    |
| t <sub>SU</sub>                    | Input Register                                | MachXO2-2000HC-HE                  | -0.20 | _    | -0.20 |      | -0.20 |      | ns    |
|                                    |                                               | MachXO2-4000HC-HE                  | -0.23 | _    | -0.23 | _    | -0.23 | _    | ns    |
|                                    |                                               | MachXO2-7000HC-HE                  | -0.23 | —    | -0.23 | _    | -0.23 | _    | ns    |
|                                    |                                               | MachXO2-256HC-HE                   | 1.75  | _    | 1.95  | _    | 2.16  | _    | ns    |
|                                    |                                               | MachXO2-640HC-HE                   | 1.75  | —    | 1.95  | —    | 2.16  | _    | ns    |
|                                    | Clock to Data Hold – PIO Input                | MachXO2-1200HC-HE                  | 1.88  | _    | 2.12  |      | 2.36  | _    | ns    |
| t <sub>H</sub>                     | Register                                      | MachXO2-2000HC-HE                  | 1.89  | _    | 2.13  | _    | 2.37  | _    | ns    |
|                                    |                                               | MachXO2-4000HC-HE                  | 1.94  | —    | 2.18  | _    | 2.43  | _    | ns    |
|                                    |                                               | MachXO2-7000HC-HE                  | 1.98  | _    | 2.23  | —    | 2.49  | —    | ns    |

**Over Recommended Operating Conditions** 



|                        |                                                                           |                                    | -        | -6        | _         | 5     | -4      |          |                        |
|------------------------|---------------------------------------------------------------------------|------------------------------------|----------|-----------|-----------|-------|---------|----------|------------------------|
| Parameter              | Description                                                               | Device                             | Min.     | Max.      | Min.      | Max.  | Min.    | Max.     | Units                  |
|                        |                                                                           | MachXO2-1200HC-HE                  | 0.41     |           | 0.48      |       | 0.55    |          | ns                     |
|                        | Clock to Data Hold – PIO Input                                            | MachXO2-2000HC-HE                  | 0.42     |           | 0.49      |       | 0.56    |          | ns                     |
| t <sub>HPLL</sub>      | Register                                                                  | MachXO2-4000HC-HE                  | 0.43     | —         | 0.50      | —     | 0.58    | —        | ns                     |
|                        |                                                                           | MachXO2-7000HC-HE                  | 0.46     | —         | 0.54      | —     | 0.62    | —        | ns                     |
|                        |                                                                           | MachXO2-1200HC-HE                  | 2.88     | —         | 3.19      | —     | 3.72    | —        | ns                     |
|                        | Clock to Data Setup – PIO<br>Input Register with Data Input               | MachXO2-2000HC-HE                  | 2.87     | —         | 3.18      | —     | 3.70    | —        | ns                     |
| t <sub>SU_DELPLL</sub> | Delay                                                                     | MachXO2-4000HC-HE                  | 2.96     | —         | 3.28      | —     | 3.81    | —        | ns                     |
|                        |                                                                           | MachXO2-7000HC-HE                  | 3.05     | —         | 3.35      | —     | 3.87    | —        | ns                     |
|                        |                                                                           | MachXO2-1200HC-HE                  | -0.83    | —         | -0.83     |       | -0.83   |          | ns                     |
|                        | H_DELPLL Clock to Data Hold – PIO Input<br>Register with Input Data Delay | MachXO2-2000HC-HE                  | -0.83    | —         | -0.83     | —     | -0.83   | —        | ns                     |
| <sup>L</sup> H_DELPLL  |                                                                           | MachXO2-4000HC-HE                  | -0.87    | —         | -0.87     | —     | -0.87   | —        | ns                     |
|                        |                                                                           | MachXO2-7000HC-HE                  | -0.91    | —         | -0.91     | —     | -0.91   | —        | ns                     |
| Generic DDF            | RX1 Inputs with Clock and Data                                            | Aligned at Pin Using PC            | LK Pin   | for Cloc  | k Input - | GDDR  | (1_RX.S | CLK.Ali  | gned <sup>9, 12</sup>  |
| t <sub>DVA</sub>       | Input Data Valid After CLK                                                |                                    |          | 0.317     |           | 0.344 |         | 0.368    | UI                     |
| t <sub>DVE</sub>       | Input Data Hold After CLK                                                 | All MachXO2 devices,               | 0.742    | —         | 0.702     |       | 0.668   | —        | UI                     |
| f <sub>DATA</sub>      | DDRX1 Input Data Speed                                                    | all sides                          | _        | 300       | —         | 250   | —       | 208      | Mbps                   |
| f <sub>DDRX1</sub>     | DDRX1 SCLK Frequency                                                      |                                    | _        | 150       | —         | 125   | —       | 104      | MHz                    |
| Generic DDF            | X1 Inputs with Clock and Data C                                           | Centered at Pin Using PC           | LK Pin f | or Clock  | Input –   | GDDRX | 1_RX.SC | LK.Cen   | tered <sup>9, 12</sup> |
| t <sub>SU</sub>        | Input Data Setup Before CLK                                               |                                    | 0.566    |           | 0.560     |       | 0.538   |          | ns                     |
| t <sub>HO</sub>        | Input Data Hold After CLK                                                 | All MachXO2 devices,               | 0.778    |           | 0.879     | —     | 1.090   | _        | ns                     |
| f <sub>DATA</sub>      | DDRX1 Input Data Speed                                                    | all sides                          | _        | 300       | —         | 250   | —       | 208      | Mbps                   |
| f <sub>DDRX1</sub>     | DDRX1 SCLK Frequency                                                      |                                    | _        | 150       | —         | 125   | —       | 104      | MHz                    |
| Generic DDF            | RX2 Inputs with Clock and Data                                            | Aligned at Pin Using PC            | LK Pin 1 | for Clock | < Input – | GDDRX | 2_RX.E  | CLK.Alię | gned <sup>9, 12</sup>  |
| t <sub>DVA</sub>       | Input Data Valid After CLK                                                |                                    | —        | 0.316     |           | 0.342 |         | 0.364    | UI                     |
| t <sub>DVE</sub>       | Input Data Hold After CLK                                                 | MachXO2-640U,                      | 0.710    |           | 0.675     | —     | 0.679   | _        | UI                     |
| f <sub>DATA</sub>      | DDRX2 Serial Input Data<br>Speed                                          | MachXO2-1200/U and larger devices, | _        | 664       | _         | 554   | _       | 462      | Mbps                   |
| f <sub>DDRX2</sub>     | DDRX2 ECLK Frequency                                                      | bottom side only <sup>11</sup>     | _        | 332       | —         | 277   | —       | 231      | MHz                    |
| f <sub>SCLK</sub>      | SCLK Frequency                                                            |                                    | _        | 166       | —         | 139   | —       | 116      | MHz                    |
| Generic DDF            | X2 Inputs with Clock and Data C                                           | Centered at Pin Using PC           | LK Pin f | or Clock  | Input –   | GDDRX | 2_RX.EC | LK.Cent  | ered <sup>9, 12</sup>  |
| t <sub>SU</sub>        | Input Data Setup Before CLK                                               |                                    | 0.233    | —         | 0.219     |       | 0.198   |          | ns                     |
| t <sub>HO</sub>        | Input Data Hold After CLK                                                 | MachXO2-640U,                      | 0.287    | —         | 0.287     |       | 0.344   |          | ns                     |
| f <sub>DATA</sub>      | DDRX2 Serial Input Data<br>Speed                                          | MachXO2-1200/U and larger devices, | _        | 664       | _         | 554   | _       | 462      | Mbps                   |
| f <sub>DDRX2</sub>     | DDRX2 ECLK Frequency                                                      | bottom side only <sup>11</sup>     |          | 332       |           | 277   | _       | 231      | MHz                    |
| f <sub>SCLK</sub>      | SCLK Frequency                                                            | 1                                  | _        | 166       | _         | 139   |         | 116      | MHz                    |
|                        | · · ·                                                                     |                                    | L        | l         | 1         | 1     | 1       | 1        |                        |



|                        |                                          |                                                    | -     | -3    | _     | 2     | _     | -1    |       |
|------------------------|------------------------------------------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Parameter              | Description                              | Device                                             | Min.  | Max.  | Min.  | Max.  | Min.  | Max.  | Units |
| LPDDR <sup>9, 12</sup> |                                          | •                                                  |       |       |       |       |       |       |       |
| t <sub>DVADQ</sub>     | Input Data Valid After DQS<br>Input      |                                                    | _     | 0.349 | _     | 0.381 | _     | 0.396 | UI    |
| t <sub>DVEDQ</sub>     | Input Data Hold After DQS<br>Input       |                                                    | 0.665 | —     | 0.630 | _     | 0.613 | —     | UI    |
| t <sub>DQVBS</sub>     | Output Data Invalid Before<br>DQS Output | MachXO2-1200/U                                     | 0.25  | _     | 0.25  | _     | 0.25  | _     | UI    |
| t <sub>DQVAS</sub>     | Output Data Invalid After DQS<br>Output  | and larger devices, right side only. <sup>13</sup> | 0.25  | _     | 0.25  | _     | 0.25  | _     | UI    |
| f <sub>DATA</sub>      | MEM LPDDR Serial Data<br>Speed           |                                                    | _     | 120   | _     | 110   | _     | 96    | Mbps  |
| f <sub>SCLK</sub>      | SCLK Frequency                           |                                                    | —     | 60    | —     | 55    |       | 48    | MHz   |
| f <sub>LPDDR</sub>     | LPDDR Data Transfer Rate                 |                                                    | 0     | 120   | 0     | 110   | 0     | 96    | Mbps  |
| DDR <sup>9, 12</sup>   |                                          | ·                                                  |       |       | •     |       |       |       |       |
| t <sub>DVADQ</sub>     | Input Data Valid After DQS<br>Input      |                                                    | _     | 0.347 | _     | 0.374 | _     | 0.393 | UI    |
| t <sub>DVEDQ</sub>     | Input Data Hold After DQS<br>Input       |                                                    | 0.665 | _     | 0.637 | _     | 0.616 | —     | UI    |
| t <sub>DQVBS</sub>     | Output Data Invalid Before<br>DQS Output | MachXO2-1200/U<br>and larger devices,              | 0.25  | _     | 0.25  | _     | 0.25  | —     | UI    |
| t <sub>DQVAS</sub>     | Output Data Invalid After DQS<br>Output  | right side only. <sup>13</sup>                     | 0.25  | _     | 0.25  | _     | 0.25  | _     | UI    |
| f <sub>DATA</sub>      | MEM DDR Serial Data Speed                |                                                    |       | 140   | _     | 116   |       | 98    | Mbps  |
| f <sub>SCLK</sub>      | SCLK Frequency                           |                                                    | —     | 70    |       | 58    | —     | 49    | MHz   |
| f <sub>MEM_DDR</sub>   | MEM DDR Data Transfer Rate               |                                                    | N/A   | 140   | N/A   | 116   | N/A   | 98    | Mbps  |
| DDR2 <sup>9, 12</sup>  |                                          | •                                                  |       |       |       |       |       |       |       |
| t <sub>DVADQ</sub>     | Input Data Valid After DQS<br>Input      |                                                    | _     | 0.372 | _     | 0.394 | _     | 0.410 | UI    |
| t <sub>DVEDQ</sub>     | Input Data Hold After DQS<br>Input       |                                                    | 0.690 | _     | 0.658 | _     | 0.618 | _     | UI    |
| t <sub>DQVBS</sub>     | Output Data Invalid Before<br>DQS Output | MachXO2-1200/U                                     | 0.25  | _     | 0.25  | _     | 0.25  | _     | UI    |
| t <sub>DQVAS</sub>     | Output Data Invalid After DQS<br>Output  | and larger devices, right side only. <sup>13</sup> | 0.25  | _     | 0.25  | _     | 0.25  |       | UI    |
| f <sub>DATA</sub>      | MEM DDR Serial Data Speed                | 1                                                  | —     | 140   | —     | 116   |       | 98    | Mbps  |
| f <sub>SCLK</sub>      | SCLK Frequency                           | 1                                                  | —     | 70    | —     | 58    |       | 49    | MHz   |
| f <sub>MEM_DDR2</sub>  | MEM DDR2 Data Transfer<br>Rate           |                                                    | N/A   | 140   | N/A   | 116   | N/A   | 98    | Mbps  |

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0 pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode  $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$ .

7. The  $t_{SU_{DEL}}$  and  $t_{H_{DEL}}$  values use the SCLK\_ZERHOLD default step size. Each step is 167 ps (-3), 182 ps (-2), 195 ps (-1).

8. This number for general purpose usage. Duty cycle tolerance is +/-10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.


11. High-speed DDR and LVDS not supported in SG32 (32-Pin QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.









|                                                           | MachXO2-4000 |              |             |              |              |              |              |              |  |
|-----------------------------------------------------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--|
|                                                           | 84<br>QFN    | 132<br>csBGA | 144<br>TQFP | 184<br>csBGA | 256<br>caBGA | 256<br>ftBGA | 332<br>caBGA | 484<br>fpBGA |  |
| General Purpose I/O per Bank                              |              |              |             |              |              |              |              |              |  |
| Bank 0                                                    | 27           | 25           | 27          | 37           | 50           | 50           | 68           | 70           |  |
| Bank 1                                                    | 10           | 26           | 29          | 37           | 52           | 52           | 68           | 68           |  |
| Bank 2                                                    | 22           | 28           | 29          | 39           | 52           | 52           | 70           | 72           |  |
| Bank 3                                                    | 0            | 7            | 9           | 10           | 16           | 16           | 24           | 24           |  |
| Bank 4                                                    | 9            | 8            | 10          | 12           | 16           | 16           | 16           | 16           |  |
| Bank 5                                                    | 0            | 10           | 10          | 15           | 20           | 20           | 28           | 28           |  |
| Total General Purpose Single Ended I/O                    | 68           | 104          | 114         | 150          | 206          | 206          | 274          | 278          |  |
| Differential I/O per Bank                                 |              |              |             |              |              |              |              |              |  |
| Bank 0                                                    | 13           | 13           | 14          | 18           | 25           | 25           | 34           | 35           |  |
| Bank 1                                                    | 4            | 13           | 14          | 18           | 26           | 26           | 34           | 34           |  |
| Bank 2                                                    | 11           | 14           | 14          | 19           | 26           | 26           | 35           | 36           |  |
| Bank 3                                                    | 0            | 3            | 4           | 4            | 8            | 8            | 12           | 12           |  |
| Bank 4                                                    | 4            | 4            | 5           | 6            | 8            | 8            | 8            | 8            |  |
| Bank 5                                                    | 0            | 5            | 5           | 7            | 10           | 10           | 14           | 14           |  |
| Total General Purpose Differential I/O                    | 32           | 52           | 56          | 72           | 103          | 103          | 137          | 139          |  |
| Dual Function I/O                                         | 28           | 37           | 37          | 37           | 37           | 37           | 37           | 37           |  |
| High-speed Differential I/O                               |              |              |             | •            |              |              |              |              |  |
| Bank 0                                                    | 8            | 8            | 9           | 8            | 18           | 18           | 18           | 18           |  |
| Gearboxes                                                 |              |              |             | •            |              |              |              |              |  |
| Number of 7:1 or 8:1 Output Gearbox<br>Available (Bank 0) | 8            | 8            | 9           | 9            | 18           | 18           | 18           | 18           |  |
| Number of 7:1 or 8:1 Input Gearbox<br>Available (Bank 2)  | 11           | 14           | 14          | 12           | 18           | 18           | 18           | 18           |  |
| DQS Groups                                                | 1            | 1            |             |              |              |              |              |              |  |
| Bank 1                                                    | 1            | 2            | 2           | 2            | 2            | 2            | 2            | 2            |  |
| VCCIO Pins                                                |              |              |             |              |              |              |              |              |  |
| Bank 0                                                    | 3            | 3            | 3           | 3            | 4            | 4            | 4            | 10           |  |
| Bank 1                                                    | 1            | 3            | 3           | 3            | 4            | 4            | 4            | 10           |  |
| Bank 2                                                    | 2            | 3            | 3           | 3            | 4            | 4            | 4            | 10           |  |
| Bank 3                                                    | 1            | 1            | 1           | 1            | 1            | 1            | 2            | 3            |  |
| Bank 4                                                    | 1            | 1            | 1           | 1            | 2            | 2            | 1            | 4            |  |
| Bank 5                                                    | 1            | 1            | 1           | 1            | 1            | 1            | 2            | 3            |  |
| VCC                                                       | 4            | 4            | 4           | 4            | 8            | 8            | 8            | 12           |  |
| GND                                                       | 4            | 10           | 12          | 16           | 24           | 24           | 27           | 48           |  |
| NC                                                        | 1            | 1            | 1           | 1            | 1            | 1            | 5            | 105          |  |
| Reserved for configuration                                | 1            | 1            | 1           | 1            | 1            | 1            | 1            | 1            |  |
| liebel ved for bernigaration                              |              |              |             |              |              |              |              |              |  |



# **For Further Information**

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

# **Thermal Management**

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

# For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software



# Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging

| Part Number          | LUTs | Supply Voltage | Grade | Package            | Leads | Temp. |
|----------------------|------|----------------|-------|--------------------|-------|-------|
| LCMXO2-256ZE-1SG32C  | 256  | 1.2 V          | –1    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-256ZE-2SG32C  | 256  | 1.2 V          | -2    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-256ZE-3SG32C  | 256  | 1.2 V          | -3    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-256ZE-1UMG64C | 256  | 1.2 V          | –1    | Halogen-Free ucBGA | 64    | COM   |
| LCMXO2-256ZE-2UMG64C | 256  | 1.2 V          | -2    | Halogen-Free ucBGA | 64    | COM   |
| LCMXO2-256ZE-3UMG64C | 256  | 1.2 V          | -3    | Halogen-Free ucBGA | 64    | COM   |
| LCMXO2-256ZE-1TG100C | 256  | 1.2 V          | -1    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-256ZE-2TG100C | 256  | 1.2 V          | -2    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-256ZE-3TG100C | 256  | 1.2 V          | -3    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-256ZE-1MG132C | 256  | 1.2 V          | –1    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-256ZE-2MG132C | 256  | 1.2 V          | -2    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-256ZE-3MG132C | 256  | 1.2 V          | -3    | Halogen-Free csBGA | 132   | COM   |

| Part Number          | LUTs | Supply Voltage | Grade | Package            | Leads | Temp. |
|----------------------|------|----------------|-------|--------------------|-------|-------|
| LCMXO2-640ZE-1TG100C | 640  | 1.2 V          | -1    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-640ZE-2TG100C | 640  | 1.2 V          | -2    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-640ZE-3TG100C | 640  | 1.2 V          | -3    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-640ZE-1MG132C | 640  | 1.2 V          | -1    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-640ZE-2MG132C | 640  | 1.2 V          | -2    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-640ZE-3MG132C | 640  | 1.2 V          | -3    | Halogen-Free csBGA | 132   | COM   |

| Part Number           | LUTs | Supply Voltage | Grade | Package            | Leads | Temp. |
|-----------------------|------|----------------|-------|--------------------|-------|-------|
| LCMXO2-1200ZE-1SG32C  | 1280 | 1.2 V          | -1    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-1200ZE-2SG32C  | 1280 | 1.2 V          | -2    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-1200ZE-3SG32C  | 1280 | 1.2 V          | -3    | Halogen-Free QFN   | 32    | COM   |
| LCMXO2-1200ZE-1TG100C | 1280 | 1.2 V          | -1    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-1200ZE-2TG100C | 1280 | 1.2 V          | -2    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-1200ZE-3TG100C | 1280 | 1.2 V          | -3    | Halogen-Free TQFP  | 100   | COM   |
| LCMXO2-1200ZE-1MG132C | 1280 | 1.2 V          | -1    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-1200ZE-2MG132C | 1280 | 1.2 V          | -2    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-1200ZE-3MG132C | 1280 | 1.2 V          | -3    | Halogen-Free csBGA | 132   | COM   |
| LCMXO2-1200ZE-1TG144C | 1280 | 1.2 V          | -1    | Halogen-Free TQFP  | 144   | COM   |
| LCMXO2-1200ZE-2TG144C | 1280 | 1.2 V          | -2    | Halogen-Free TQFP  | 144   | COM   |
| LCMXO2-1200ZE-3TG144C | 1280 | 1.2 V          | -3    | Halogen-Free TQFP  | 144   | COM   |



| Date              | Version                             | Section                                                                                                                                                         | Change Summary                                                                                                                   |  |  |
|-------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| January 2013 02.0 | 02.0                                | Introduction                                                                                                                                                    | Updated the total number IOs to include JTAGENB.                                                                                 |  |  |
|                   | Architecture                        | Supported Output Standards table – Added 3.3 $V_{CCIO}$ (Typ.) to LVDS row.                                                                                     |                                                                                                                                  |  |  |
|                   |                                     |                                                                                                                                                                 | Changed SRAM CRC Error Detection to Soft Error Detection.                                                                        |  |  |
|                   | DC and Switching<br>Characteristics | Power Supply Ramp Rates table – Updated Units column for t <sub>RAMP</sub> symbol.                                                                              |                                                                                                                                  |  |  |
|                   |                                     |                                                                                                                                                                 | Added new Maximum sysIO Buffer Performance table.                                                                                |  |  |
|                   |                                     | sysCLOCK PLL Timing table – Updated Min. column values for $f_{IN}, f_{OUT}, f_{OUT2}$ and $f_{PFD}$ parameters. Added $t_{SPO}$ parameter. Updated footnote 6. |                                                                                                                                  |  |  |
|                   |                                     | MachXO2 Oscillator Output Frequency table – Updated symbol name                                                                                                 |                                                                                                                                  |  |  |
|                   |                                     | for t <sub>STABLEOSC</sub> .                                                                                                                                    |                                                                                                                                  |  |  |
|                   |                                     | DC Electrical Characteristics table – Updated conditions for ${\rm I}_{\rm IL,}~{\rm I}_{\rm IH}$ symbols.                                                      |                                                                                                                                  |  |  |
|                   |                                     | Corrected parameters tDQVBS and tDQVAS                                                                                                                          |                                                                                                                                  |  |  |
|                   |                                     | Corrected MachXO2 ZE parameters tDVADQ and tDVEDQ                                                                                                               |                                                                                                                                  |  |  |
|                   |                                     | Pinout Information                                                                                                                                              | Included the MachXO2-4000HE 184 csBGA package.                                                                                   |  |  |
|                   |                                     | Ordering Information                                                                                                                                            | Updated part number.                                                                                                             |  |  |
| April 2012        | 01.9                                | Architecture                                                                                                                                                    | Removed references to TN1200.                                                                                                    |  |  |
|                   |                                     | Ordering Information                                                                                                                                            | Updated the Device Status portion of the MachXO2 Part Number Description to include the 50 parts per reel for the WLCSP package. |  |  |
|                   |                                     | Added new part number and footnote 2 for LCMXO2-1200ZE-<br>1UWG25ITR50.                                                                                         |                                                                                                                                  |  |  |
|                   |                                     | Updated footnote 1 for LCMXO2-1200ZE-1UWG25ITR.                                                                                                                 |                                                                                                                                  |  |  |
|                   |                                     | Supplemental<br>Information                                                                                                                                     | Removed references to TN1200.                                                                                                    |  |  |
| March 2012 01.8   | 01.8                                | Introduction                                                                                                                                                    | Added 32 QFN packaging information to Features bullets and MachXO2 Family Selection Guide table.                                 |  |  |
|                   |                                     | DC and Switching<br>Characteristics                                                                                                                             | Changed 'STANDBY' to 'USERSTDBY' in Standby Mode timing dia-<br>gram.                                                            |  |  |
|                   |                                     | Pinout Information                                                                                                                                              | Removed footnote from Pin Information Summary tables.                                                                            |  |  |
|                   |                                     |                                                                                                                                                                 | Added 32 QFN package to Pin Information Summary table.                                                                           |  |  |
|                   |                                     | Ordering Information                                                                                                                                            | Updated Part Number Description and Ordering Information tables for 32 QFN package.                                              |  |  |
|                   |                                     |                                                                                                                                                                 | Updated topside mark diagram in the Ordering Information section.                                                                |  |  |



| Date          | Version                             | Section                                                                                                                                                                                      | Change Summary                                                                                                                                                                     |  |  |
|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| February 2012 | bruary 2012 01.7                    |                                                                                                                                                                                              | Updated document with new corporate logo.                                                                                                                                          |  |  |
| 01.6          | 01.6                                | —                                                                                                                                                                                            | Data sheet status changed from preliminary to final.                                                                                                                               |  |  |
|               | Introduction                        | MachXO2 Family Selection Guide table – Removed references to 49-ball WLCSP.                                                                                                                  |                                                                                                                                                                                    |  |  |
|               | DC and Switching<br>Characteristics | Updated Flash Download Time table.                                                                                                                                                           |                                                                                                                                                                                    |  |  |
|               |                                     | Modified Storage Temperature in the Absolute Maximum Ratings section.                                                                                                                        |                                                                                                                                                                                    |  |  |
|               |                                     |                                                                                                                                                                                              | Updated I <sub>DK</sub> max in Hot Socket Specifications table.                                                                                                                    |  |  |
|               |                                     | Modified Static Supply Current tables for ZE and HC/HE devices.                                                                                                                              |                                                                                                                                                                                    |  |  |
|               |                                     |                                                                                                                                                                                              | Updated Power Supply Ramp Rates table.                                                                                                                                             |  |  |
|               |                                     |                                                                                                                                                                                              | Updated Programming and Erase Supply Current tables.                                                                                                                               |  |  |
|               |                                     |                                                                                                                                                                                              | Updated data in the External Switching Characteristics table.                                                                                                                      |  |  |
|               |                                     |                                                                                                                                                                                              | Corrected Absolute Maximum Ratings for Dedicated Input Voltage<br>Applied for LCMXO2 HC.                                                                                           |  |  |
|               |                                     | DC Electrical Characteristics table – Minor corrections to conditions for $\mathbf{I}_{IL},  \mathbf{I}_{IH.}$                                                                               |                                                                                                                                                                                    |  |  |
|               | Pinout Information                  | Removed references to 49-ball WLCSP.                                                                                                                                                         |                                                                                                                                                                                    |  |  |
|               |                                     | Signal Descriptions table – Updated description for GND, VCC, and VCCIOx.                                                                                                                    |                                                                                                                                                                                    |  |  |
|               |                                     | Updated Pin Information Summary table – Number of VCCIOs,<br>GNDs, VCCs, and Total Count of Bonded Pins for MachXO2-256,<br>640, and 640U and Dual Function I/O for MachXO2-4000 332caBGA.   |                                                                                                                                                                                    |  |  |
|               |                                     | Ordering Information                                                                                                                                                                         | Removed references to 49-ball WLCSP                                                                                                                                                |  |  |
| August 2011   |                                     | DC and Switching<br>Characteristics                                                                                                                                                          | Updated ESD information.                                                                                                                                                           |  |  |
|               |                                     | Ordering Information                                                                                                                                                                         | Updated footnote for ordering WLCSP devices.                                                                                                                                       |  |  |
|               | 01.4 Architecture                   | Architecture                                                                                                                                                                                 | Updated information in Clock/Control Distribution Network and sys-<br>CLOCK Phase Locked Loops (PLLs).                                                                             |  |  |
|               |                                     | DC and Switching<br>Characteristics                                                                                                                                                          | Updated ${\rm I}_{\rm IL}$ and ${\rm I}_{\rm IH}$ conditions in the DC Electrical Characteristics table.                                                                           |  |  |
|               |                                     | Pinout Information                                                                                                                                                                           | Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables.                                                                                 |  |  |
|               |                                     | Updated Pin Information Summary table: Dual Function I/O, DQS<br>Groups Bank 1, Total General Purpose Single-Ended I/O, Differential<br>I/O Per Bank, Total Count of Bonded Pins, Gearboxes. |                                                                                                                                                                                    |  |  |
|               |                                     |                                                                                                                                                                                              | Added column of data for MachXO2-2000 49 WLCSP.                                                                                                                                    |  |  |
|               |                                     | Ordering Information                                                                                                                                                                         | Updated R1 Device Specifications text section with information on migration from MachXO2-1200-R1 to Standard (non-R1) devices.                                                     |  |  |
|               |                                     |                                                                                                                                                                                              | Corrected Supply Voltage typo for part numbers: LCMX02-2000UHE-<br>4FG484I, LCMX02-2000UHE-5FG484I, LCMX02-2000UHE-<br>6FG484I.                                                    |  |  |
|               |                                     |                                                                                                                                                                                              | Added footnote for WLCSP package parts.                                                                                                                                            |  |  |
|               |                                     | Supplemental<br>Information                                                                                                                                                                  | Removed reference to Stand-alone Power Calculator for MachXO2<br>Devices. Added reference to AN8086, Designing for Migration from<br>MachXO2-1200-R1 to Standard (non-R1) Devices. |  |  |