
E · K Fattice Semiconductor Corporation - <u>LCMX02-4000ZE-2BG256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	540
Number of Logic Elements/Cells	4320
Total RAM Bits	94208
Number of I/O	206
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-4000ze-2bg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the MachXO2 family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found in MachXO2-640/U and larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT usage.

The MachXO2 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

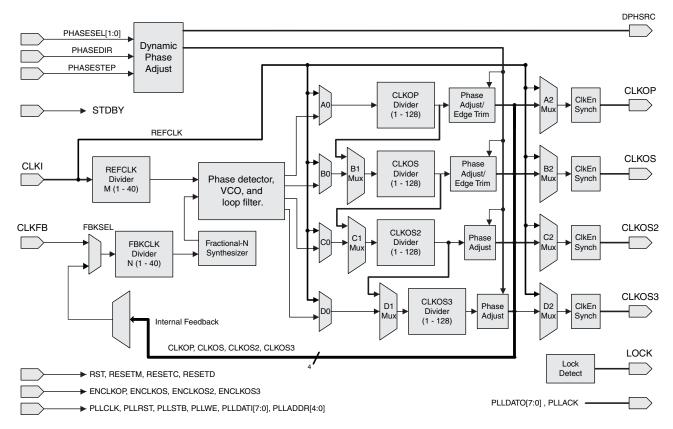
The MachXO2 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks on MachXO2-640U, MachXO2-1200/U and larger devices. These blocks are located at the ends of the on-chip Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

MachXO2 devices provide commonly used hardened functions such as SPI controller, I²C controller and timer/ counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I²C and JTAG ports.

Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO2 devices are available for operation from 3.3 V, 2.5 V and 1.2 V power supplies, providing easy integration into the overall system.

PFU Blocks

The core of the MachXO2 device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block.



This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

Table 2-4 provides signal descriptions of the PLL block.

Table 2-4. PLL Signal	Descriptions
-----------------------	--------------

Port Name	I/O	Description	
CLKI	I	Input clock to PLL	
CLKFB	I	eedback clock	
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports	
PHASEDIR	I	Dynamic Phase adjustment direction	
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.	

 Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18

Bus Size Matching

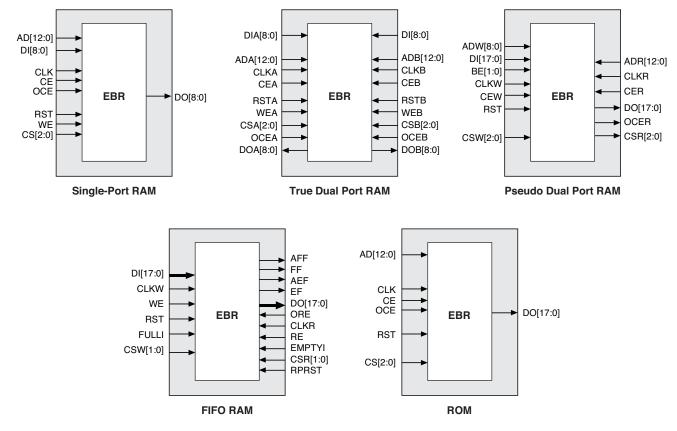
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading


Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-8. sysMEM Memory Primitives

Table 2-6. EBR Signal Descriptions

Port Name	Description	Active State
CLK	Clock	Rising Clock Edge
CE	Clock Enable	Active High
OCE ¹	Output Clock Enable	Active High
RST	Reset	Active High
BE ¹	Byte Enable	Active High
WE	Write Enable	Active High
AD	Address Bus	—
DI	Data In	—
DO	Data Out	—
CS	Chip Select	Active High
AFF	FIFO RAM Almost Full Flag	—
FF	FIFO RAM Full Flag	—
AEF	FIFO RAM Almost Empty Flag	—
EF	FIFO RAM Empty Flag	—
RPRST	FIFO RAM Read Pointer Reset	—

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

5. In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port chip select, ORE is the output read enable.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.

Configuration and Testing

This section describes the configuration and testing features of the MachXO2 family.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with V_{CCIO} Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology.

Device Configuration

All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I²C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device:

- 1. Internal Flash Download
- 2. JTAG
- 3. Standard Serial Peripheral Interface (Master SPI mode) interface to boot PROM memory
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Standard I²C Interface to system microprocessor

Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly.

The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os.

Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS, TCK and JTAGENB). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

TransFR (Transparent Field Reconfiguration)

TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

When implementing background programming of the on-chip Flash, care must be taken for the operation of the PLL. For devices that have two PLLs (XO2-2000U, -4000 and -7000), the system must put the RPLL (Right-side PLL) in reset state during the background Flash programming. More detailed description can be found in TN1204, MachXO2 Programming and Configuration Usage Guide.

Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO2 devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile Flash memory spaces. The device can be in one of two modes:

- 1. Unlocked Readback of the SRAM configuration and non-volatile Flash memory spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash and SRAM OTP portions of the device. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Dual Boot

MachXO2 devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the on-chip Flash. The golden image MUST reside in an external SPI Flash. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1206, MachXO2 Soft Error Detection Usage Guide.

TraceID

Each MachXO2 device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO2 family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO2 migration files.

MachXO2 Family Data Sheet DC and Switching Characteristics

March 2017

Data Sheet DS1035

Absolute Maximum Ratings^{1, 2, 3}

	MachXO2 ZE/HE (1.2 V)	MachXO2 HC (2.5 V / 3.3 V)
Supply Voltage V _{CC}	–0.5 V to 1.32 V	–0.5 V to 3.75 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
I/O Tri-state Voltage Applied ^{4, 5}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Dedicated Input Voltage Applied ⁴	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Storage Temperature (Ambient)	–55 °C to 125 °C	–55 °C to 125 °C
Junction Temperature (T _J)	–40 °C to 125 °C	–40 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

5. The dual function I^2C pins SCL and SDA are limited to -0.25 V to 3.75 V or to -0.3 V with a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter		Max.	Units
V_{-} - 1	Core Supply Voltage for 1.2 V Devices	1.14	1.26	V
V _{CC} ¹	Core Supply Voltage for 2.5 V / 3.3 V Devices	2.375	3.6	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	1.14	3.6	V
t _{JCOM}	Junction Temperature Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

Power Supply Ramp Rates¹

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.			100	V/ms

1. Assumes monotonic ramp rates.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Static Supply Current – ZE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ. ⁴	Units
		LCMXO2-256ZE	18	μΑ
		LCMXO2-640ZE	28	μΑ
I _{CC}	Core Power Supply	LCMXO2-1200ZE	56	μΑ
		LCMXO2-2000ZE	80	μA
		LCMXO2-4000ZE	124	μΑ
		LCMXO2-7000ZE	189	μΑ
I _{CCIO}	Bank Power Supply ⁵ $V_{CCIO} = 2.5 V$	All devices	1	μΑ

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool.

3. Frequency = 0 MHz.

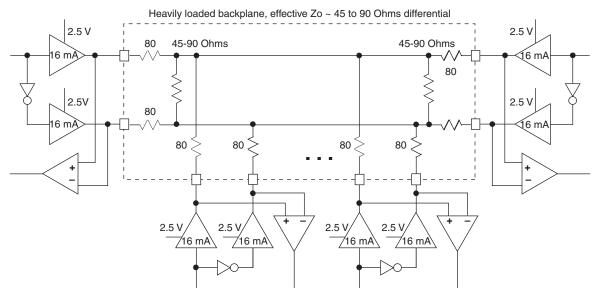
4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Static Power Consumption Contribution of Different Components – ZE Devices

The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool.


Symbol	Parameter	Тур.	Units
I _{DCBG}	Bandgap DC power contribution	101	μΑ
IDCPOR	POR DC power contribution	38	μΑ
IDCIOBANKCONTROLLER	DC power contribution per I/O bank controller	143	μA

BLVDS

The MachXO2 family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

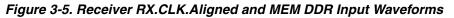
Figure 3-2. BLVDS Multi-point Output Example

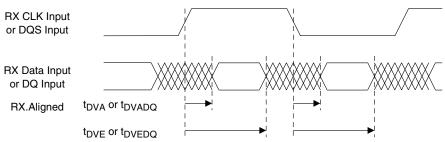
Table 3-2. BLVDS DC Conditions¹

Over Recommended	Operating	Conditions
	oporating	00110110110

		Non		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	20	20	Ohms
R _S	Driver series resistance	80	80	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.376	1.480	V
V _{OL}	Output low voltage	1.124	1.020	V
V _{OD}	Output differential voltage	0.253	0.459	V
V _{CM}	Output common mode voltage	1.250	1.250	V
I _{DC}	DC output current	11.236	10.204	mA

1. For input buffer, see LVDS table.




			-6		-5		-4			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
		MachXO2-256HC-HE	1.42	—	1.59		1.96	—	ns	
		MachXO2-640HC-HE	1.41	—	1.58		1.96	—	ns	
	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-1200HC-HE	1.63		1.79		2.17		ns	
^t SU_DEL	Delay	MachXO2-2000HC-HE	1.61		1.76		2.13		ns	
		MachXO2-4000HC-HE	1.66		1.81	—	2.19	—	ns	
		MachXO2-7000HC-HE	1.53		1.67	—	2.03	—	ns	
		MachXO2-256HC-HE	-0.24	—	-0.24	—	-0.24	—	ns	
		MachXO2-640HC-HE	-0.23	—	-0.23	—	-0.23	—	ns	
•	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	-0.24		-0.24	—	-0.24	—	ns	
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000HC-HE	-0.23	—	-0.23	—	-0.23	—	ns	
		MachXO2-4000HC-HE	-0.25	—	-0.25	—	-0.25	—	ns	
		MachXO2-7000HC-HE	-0.21	—	-0.21		-0.21	—	ns	
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	388	_	323	_	269	MHz	
General I/O	Pin Parameters (Using Edge C	lock without PLL)				l				
		MachXO2-1200HC-HE	—	7.53		7.76		8.10	ns	
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	7.53		7.76		8.10	ns	
t _{COE}	Register	MachXO2-4000HC-HE	_	7.45		7.68		8.00	ns	
		MachXO2-7000HC-HE	_	7.53		7.76		8.10	ns	
t _{SUE}		MachXO2-1200HC-HE	-0.19		-0.19	—	-0.19		ns	
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	-0.19	—	-0.19		-0.19		ns	
	Input Register	MachXO2-4000HC-HE	-0.16	—	-0.16		-0.16		ns	
		MachXO2-7000HC-HE	-0.19	—	-0.19		-0.19		ns	
	Clock to Data Hold – PIO Input Register	MachXO2-1200HC-HE	1.97		2.24		2.52		ns	
		MachXO2-2000HC-HE	1.97		2.24		2.52		ns	
t _{HE}		MachXO2-4000HC-HE	1.89		2.16		2.43		ns	
		MachXO2-7000HC-HE	1.97		2.24		2.52		ns	
		MachXO2-1200HC-HE	1.56		1.69		2.05		ns	
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	1.56		1.69		2.05		ns	
^t SU_DELE	Input Register with Data Input	MachXO2-4000HC-HE	1.74		1.88		2.25		ns	
	Delay	MachXO2-7000HC-HE	1.66		1.81		2.17		ns	
		MachXO2-1200HC-HE	-0.23		-0.23		-0.23		ns	
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.23		-0.23		-0.23		ns	
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000HC-HE	-0.34		-0.34		-0.34		ns	
		MachXO2-7000HC-HE	-0.29	_	-0.29		-0.29		ns	
General I/O	Pin Parameters (Using Primar		0.20		0.20		0.20		110	
		MachXO2-1200HC-HE	_	5.97	_	6.00	_	6.13	ns	
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	5.98	_	6.01	_	6.14	ns	
t _{COPLL}	Register	MachXO2-4000HC-HE		5.99		6.02		6.16	ns	
	-	MachXO2-7000HC-HE		6.02		6.06		6.20	ns	
		MachXO2-1200HC-HE	0.36		0.36	0.00	0.65		ns	
	Cleak to Data Satura DIC	MachXO2-2000HC-HE	0.36		0.36		0.63	_	ns	
t _{SUPLL}	Clock to Data Setup – PIO Input Register	MachXO2-2000HC-HE	0.30		0.30		0.62		ns	
		MachXO2-7000HC-HE	0.35		0.35		0.62			
			0.34		0.04		0.09		ns	

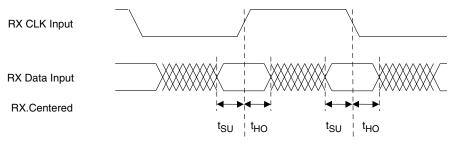

			-6		-	-5	-4			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Generic DDF	R4 Inputs with Clock and Data A	Aligned at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}	
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320		0.345	UI	
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.739	—	0.699		0.703	—	UI	
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps	
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378		315		262	MHz	
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz	
	eneric DDR4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Centere									
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	0.198	—	ns	
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.287	—	0.287		0.344	—	ns	
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps	
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378	—	315		262	MHz	
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz	
7:1 LVDS In	puts (GDDR71_RX.ECLK.7:1) ^{9,}	12								
t _{DVA}	Input Data Valid After ECLK			0.290		0.320		0.345	UI	
t _{DVE}	Input Data Hold After ECLK		0.739	—	0.699		0.703	—	UI	
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U and	_	756	_	630	_	524	Mbps	
f _{DDR71}	DDR71 ECLK Frequency	larger devices, bottom side only.11		378		315		262	MHz	
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz	
Generic DDF	R Outputs with Clock and Data	Aligned at Pin Using PC	LK Pin f	for Clock	k Input –	GDDR	(1_TX.S	CLK.Ali	gned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output			0.520	_	0.550	_	0.580	ns	
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides.	_	0.520	_	0.550	_	0.580	ns	
f _{DATA}	DDRX1 Output Data Speed			300		250		208	Mbps	
f _{DDRX1}	DDRX1 SCLK frequency			150	—	125		104	MHz	
	Outputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}	
t _{DVB}	Output Data Valid Before CLK Output		1.210	_	1.510	_	1.870	_	ns	
t _{DVA}	Output Data Valid After CLK Output	All MachXO2 devices,	1.210	_	1.510	_	1.870	_	ns	
f _{DATA}	DDRX1 Output Data Speed	all sides.		300	—	250	_	208	Mbps	
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	-		150	_	125	_	104	MHz	
Generic DDF	X2 Outputs with Clock and Data	a Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns	
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and	_	0.200	_	0.215	_	0.230	ns	
f _{DATA}	DDRX2 Serial Output Data Speed	larger devices, top side only.	_	664	_	554	_	462	Mbps	
f _{DDRX2}	DDRX2 ECLK frequency	1		332	—	277	_	231	MHz	
f _{SCLK}	SCLK Frequency	1	—	166	—	139	_	116	MHz	

Figure 3-6. Receiver RX.CLK.Centered Waveforms

Figure 3-7. Transmitter TX.CLK.Aligned Waveforms

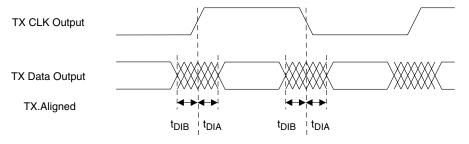
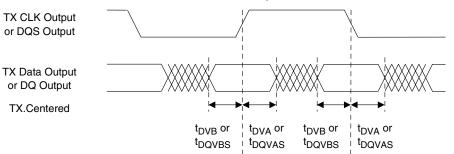



Figure 3-8. Transmitter TX.CLK.Centered and MEM DDR Output Waveforms


sysCLOCK PLL Timing

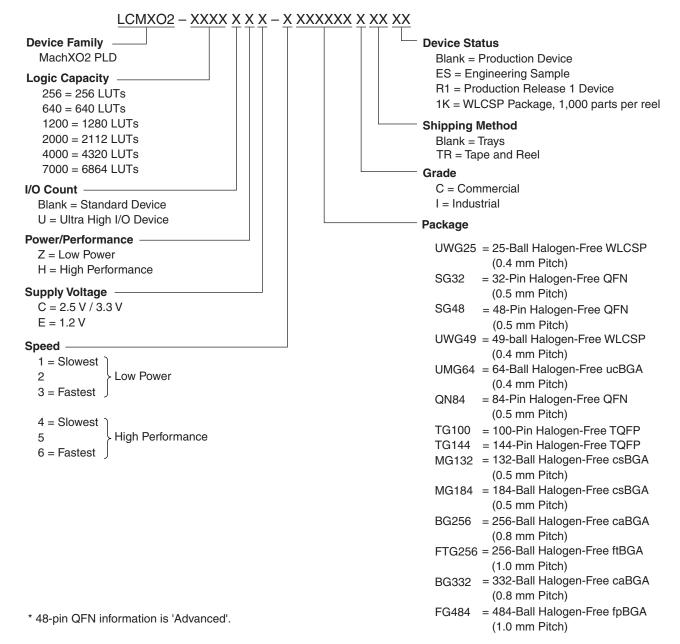
Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz
fout	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz
fout2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz
f _{VCO}	PLL VCO Frequency		200	800	MHz
f _{PFD}	Phase Detector Input Frequency		7	400	MHz
AC Characteri	stics	•			
t _{DT}	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%
t _{DT_TRIM} ⁷	Edge Duty Trim Accuracy		-75	75	%
t _{PH} ⁴	Output Phase Accuracy		-6	6	%
	Output Clask Daviad Litter	f _{OUT} > 100 MHz	—	150	ps p-p
	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP
	Output Olaski Ousla ta susla littari	f _{OUT} > 100 MHz	—	180	ps p-p
	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	_	0.009	UIPP
. 18	Output Cleak Dhoose litter	f _{PFD} > 100 MHz	_	160	ps p-p
t _{OPJIT} ^{1,8}	Output Clock Phase Jitter	f _{PFD} < 100 MHz	_	0.011	UIPP
		f _{OUT} > 100 MHz	_	230	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p
	(Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9	—	ns
tLOCK ^{2, 5}	PLL Lock-in Time		—	15	ms
t _{UNLOCK}	PLL Unlock Time		—	50	ns
. 6	Innut Clask Daviad Littar	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p
t _{IPJIT} ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{STABLE} ⁵	STANDBY High to PLL Stable		_	15	ms
t _{RST}	RST/RESETM Pulse Width		1		ns
t _{RSTREC}	RST Recovery Time		1		ns
t _{RST_DIV}	RESETC/D Pulse Width		10		ns
t _{RSTREC_DIV}	RESETC/D Recovery Time		1		ns
t _{ROTATE-SETUP}	PHASESTEP Setup Time		10		ns

Over Recommended Operating Conditions

		MachXO2-1200U				
	100 TQFP	132 csBGA	144 TQFP	25 WLCSP	32 QFN ¹	256 ftBGA
General Purpose I/O per Bank	•					
Bank 0	18	25	27	11	9	50
Bank 1	21	26	26	0	2	52
Bank 2	20	28	28	7	9	52
Bank 3	20	25	26	0	2	16
Bank 4	0	0	0	0	0	16
Bank 5	0	0	0	0	0	20
Total General Purpose Single Ended I/O	79	104	107	18	22	206
Differential I/O per Bank						
Bank 0	9	13	14	5	4	25
Bank 1	10	13	13	0	1	26
Bank 2	10	14	14	2	4	26
Bank 3	10	12	13	0	1	8
Bank 4	0	0	0	0	0	8
Bank 5	0	0	0	0	0	10
Total General Purpose Differential I/O	39	52	54	7	10	103
Dual Function I/O	31	33	33	18	22	33
High-speed Differential I/O						
Bank 0	4	7	7	0	0	14
Gearboxes						
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	4	7	7	0	0	14
Number of 7:1 or 8:1 Input Gearbox Avail- able (Bank 2)	5	7	7	0	2	14
DQS Groups						
Bank 1	1	2	2	0	0	2
VCCIO Pins						
Bank 0	2	3	3	1	2	4
Bank 1	2	3	3	0	1	4
Bank 2	2	3	3	1	2	4
Bank 3	3	3	3	0	1	1
Bank 4	0	0	0	0	0	2
Bank 5	0	0	0	0	0	1
VCC	2	4	4	2	2	8
GND	8	10	12	2	2	24
NC	1	1	8	0	0	1
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	100	132	144	25	32	256
1. Lattice recommends soldering the centra						

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

	MachXO2-2000						MachXO2-2000U
	49 WLCSP	100 TQFP	132 csBGA	144 TQFP	256 caBGA	256 ftBGA	484 ftBGA
General Purpose I/O per Bank	•		•		•		
Bank 0	19	18	25	27	50	50	70
Bank 1	0	21	26	28	52	52	68
Bank 2	13	20	28	28	52	52	72
Bank 3	0	6	7	8	16	16	24
Bank 4	0	6	8	10	16	16	16
Bank 5	6	8	10	10	20	20	28
Total General Purpose Single-Ended I/O	38	79	104	111	206	206	278
Differential I/O per Bank							
Bank 0	7	9	13	14	25	25	35
Bank 1	0	10	13	14	26	26	34
Bank 2	6	10	14	14	26	26	36
Bank 3	0	3	3	4	8	8	12
Bank 4	0	3	4	5	8	8	8
Bank 5	3	4	5	5	10	10	14
Total General Purpose Differential I/O	16	39	52	56	103	103	139
Dual Function I/O	24	31	33	33	33	33	37
High-speed Differential I/O		-					_
Bank 0	5	4	8	9	14	14	18
Gearboxes	-		_	_			-
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	4	8	9	14	14	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	10	14	14	14	14	18
DQS Groups							
Bank 1	0	1	2	2	2	2	2
VCCIO Pins							
Bank 0	2	2	3	3	4	4	10
Bank 1	0	2	3	3	4	4	10
Bank 2	1	2	3	3	4	4	10
Bank 3	0	1	1	1	1	1	3
Bank 4	0	1	1	1	2	2	4
Bank 5	1	1	1	1	1	1	3
			1		1	r	T
VCC	2	2	4	4	8	8	12
GND	4	8	10	12	24	24	48
NC	0	1	1	4	1	1	105
Reserved for Configuration	1	1	1	1	v	1	1
Total Count of Bonded Pins	39	100	132	144	256	256	484



MachXO2 Family Data Sheet Ordering Information

March 2017

Data Sheet DS1035

MachXO2 Part Number Description

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

Date	Version	Section	Change Summary
May 2016	3.2	All	Moved designation for 84 QFN package information from 'Advanced' to 'Final'.
		Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Added 'Advanced' 48 QFN package. — Revised footnote 6. — Added footnote 9.
		DC and Switching Characteristics	Updated the MachXO2 External Switching Characteristics – HC/HE Devices section. Added footnote 12.
			Updated the MachXO2 External Switching Characteristics – ZE Devices section. Added footnote 12.
		Pinout Information	Updated the Signal Descriptions section. Added information on GND signal.
			Updated the Pinout Information Summary section. — Added 'Advanced' MachXO2-256 48 QFN values. — Added 'Advanced' MachXO2-640 48 QFN values. — Added footnote to GND. — Added footnotes 2 and 3.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added 'Advanced' SG48 package and revised footnote.
			Updated the Ordering Information section. — Added part numbers for 'Advanced' QFN 48 package.
March 2016	3.1	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Added 32 QFN value for XO2-1200. — Added 84 QFN (7 mm x 7 mm, 0.5 mm) package. — Modified package name to 100-pin TQFP. — Modified package name to 144-pin TQFP. — Added footnote.
		Architecture	Updated the Typical I/O Behavior During Power-up section. Removed reference to TN1202.
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications section. Revised t _{DPPDONE} and t _{DPPINIT} Max. values per PCN 03A-16, released March 2016.
		Pinout Information	Updated the Pinout Information Summary section. — Added MachXO2-1200 32 QFN values. — Added 'Advanced' MachXO2-4000 84 QFN values.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added 'Advanced' QN84 package and footnote.
			Updated the Ordering Information section. — Added part numbers for 1280 LUTs QFN 32 package. — Added part numbers for 4320 LUTs QFN 84 package.
March 2015	3.0	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Changed 64-ball ucBGA dimension.
		Architecture	Updated the Device Configuration section. Added JTAGENB to TAP dual purpose pins.