

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	18432
Number of I/O	79
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-640hc-6mg132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

Table 2-4 provides signal descriptions of the PLL block.

Port Name	I/O	Description
CLKI	I	Input clock to PLL
CLKFB	I	Feedback clock
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports
PHASEDIR	I	Dynamic Phase adjustment direction
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.

Figure 2-8. sysMEM Memory Primitives

Table 2-6. EBR Signal Descriptions

Port Name	Description	Active State
CLK	Clock	Rising Clock Edge
CE	Clock Enable	Active High
OCE ¹	Output Clock Enable	Active High
RST	Reset	Active High
BE ¹	Byte Enable	Active High
WE	Write Enable	Active High
AD	Address Bus	
DI	Data In	_
DO	Data Out	_
CS	Chip Select	Active High
AFF	FIFO RAM Almost Full Flag	_
FF	FIFO RAM Full Flag	_
AEF	FIFO RAM Almost Empty Flag	_
EF	FIFO RAM Empty Flag	_
RPRST	FIFO RAM Read Pointer Reset	_

1. Optional signals.

2. For dual port EBR primitives a trailing 'A' or 'B' in the signal name specifies the EBR port A or port B respectively.

3. For FIFO RAM mode primitive, a trailing 'R' or 'W' in the signal name specifies the FIFO read port or write port respectively.

4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2).

5. In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port chip select, ORE is the output read enable.

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)

Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers.

Left, Top, Bottom Edges

In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch.

In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-14 shows the output register block on the left, top and bottom edges.

Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges)

Right Edge

The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges.

In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output.

Figure 2-15 shows the output register block on the right edge.

Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output.

The tri-state register blocks on the right edge contain an additional register for DDR memory operation. In DDR memory mode, the register TS input is fed into another register that is clocked using the DQSW90 signal. The output of this register is used as a tri-state control.

Input Gearbox

Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals.

Table 2-9.	Input	Gearbox	Sianal List
14010 2 01	mpat	acaison	orginal Eloc

Name	I/O Type	Description
D	Input	High-speed data input after programmable delay in PIO A input register block
ALIGNWD	Input	Data alignment signal from device core
SCLK	Input	Slow-speed system clock
ECLK[1:0]	Input	High-speed edge clock
RST	Input	Reset
Q[7:0]	Output	Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

Table 2-11. I/O Support Device by Device

	MachXO2-256, MachXO2-640	MachXO2-640U, MachXO2-1200	MachXO2-1200U MachXO2-2000/U, MachXO2-4000, MachXO2-7000
Number of I/O Banks	4	4	6
		Single-ended (all I/O banks)	Single-ended (all I/O banks)
Tupo of Input Pufforo	Single-ended (all I/O banks)	Differential Receivers (all I/O	Differential Receivers (all I/O
Type of Input Bullers	Differential Receivers (all I/O banks)	Differential input termination (bottom side)	Differential input termination (bottom side)
Turses of Output Duffers	Single-ended buffers with	Single-ended buffers with complementary outputs (all I/O banks)	Single-ended buffers with complementary outputs (all I/O banks)
Types of Output Buffers	banks)	Differential buffers with true LVDS outputs (50% on top side)	Differential buffers with true LVDS outputs (50% on top side)
Differential Output Emulation Capability	All I/O banks	All I/O banks	All I/O banks
PCI Clamp Support	No	Clamp on bottom side only	Clamp on bottom side only

Table 2-12. Supported Input Standards

	VCCIO (Typ.)				
Input Standard	3.3 V	2.5 V	1.8 V	1.5	1.2 V
Single-Ended Interfaces					
LVTTL	✓	√ ²	√ ²	√ ²	
LVCMOS33	✓	√ ²	√ ²	√ ²	
LVCMOS25	√ ²	✓	√ ²	√ ²	
LVCMOS18	√ ²	√ ²	✓	√ ²	
LVCMOS15	√ ²	√ ²	√ ²	~	√ ²
LVCMOS12	√ ²	√ ²	√ ²	√ ²	✓
PCI ¹	✓				
SSTL18 (Class I, Class II)	✓	✓	✓		
SSTL25 (Class I, Class II)	✓	✓			
HSTL18 (Class I, Class II)	✓	✓	✓		
Differential Interfaces		•			
LVDS	✓	✓			
BLVDS, MVDS, LVPECL, RSDS	✓	✓			
MIPI ³	✓	✓			
Differential SSTL18 Class I, II	✓	✓	✓		
Differential SSTL25 Class I, II	✓	✓			
Differential HSTL18 Class I, II	✓	~	✓		

1. Bottom banks of MachXO2-640U, MachXO2-1200/U and higher density devices only.

2. Reduced functionality. Refer to TN1202, MachXO2 sysIO Usage Guide for more detail.

3. These interfaces can be emulated with external resistors in all devices.

Table 2-13. Supported Output Standards

Output Standard	V _{CCIO} (Typ.)			
Single-Ended Interfaces				
LVTTL	3.3			
LVCMOS33	3.3			
LVCMOS25	2.5			
LVCMOS18	1.8			
LVCMOS15	1.5			
LVCMOS12	1.2			
LVCMOS33, Open Drain	—			
LVCMOS25, Open Drain	—			
LVCMOS18, Open Drain	—			
LVCMOS15, Open Drain	—			
LVCMOS12, Open Drain	—			
PCI33	3.3			
SSTL25 (Class I)	2.5			
SSTL18 (Class I)	1.8			
HSTL18(Class I)	1.8			
Differential Interfaces				
LVDS ^{1, 2}	2.5, 3.3			
BLVDS, MLVDS, RSDS ²	2.5			
LVPECL ²	3.3			
MIPI ²	2.5			
Differential SSTL18	1.8			
Differential SSTL25	2.5			
Differential HSTL18	1.8			

1. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices.

sysIO Buffer Banks

The numbers of banks vary between the devices of this family. MachXO2-1200U, MachXO2-2000/U and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO2-1200 and lower density devices have four banks (one bank per side). Figures 2-18 and 2-19 show the sysIO banks and their associated supplies for all devices.

Device Subsystem	Feature Description
Bandgap	The bandgap can be turned off in standby mode. When the Bandgap is turned off, analog circuitry such as the POR, PLLs, on-chip oscillator, and referenced and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2 V devices.
Power-On-Reset (POR)	The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe V_{CC} drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable.
On-Chip Oscillator	The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode.
PLL	Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off.
I/O Bank Controller	Referenced and differential I/O buffers (used to implement standards such as HSTL, SSTL and LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection.
Dynamic Clock Enable for Primary Clock Nets	Each primary clock net can be dynamically disabled to save power.
Power Guard	Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.

For more details on the standby mode refer to TN1198, Power Estimation and Management for MachXO2 Devices.

Power On Reset

MachXO2 devices have power-on reset circuitry to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CCINT} and V_{CCIO0} (controls configuration) voltage levels. It then triggers download from the on-chip configuration Flash memory after reaching the V_{PORUP} level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For devices without voltage regulators (ZE and HE devices), V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators (HC devices), V_{CCINT} is regulated from the V_{CC} supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as Flash Download Time (t_{REFRESH}) in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tristate. I/Os are released to user functionality once the device has finished configuration. Note that for HC devices, a separate POR circuit monitors external V_{CC} voltage in addition to the POR circuit that monitors the internal post-regulated power supply voltage level.

Once the device enters into user mode, the POR circuitry can optionally continue to monitor V_{CCINT} levels. If V_{CCINT} drops below $V_{PORDNBG}$ level (with the bandgap circuitry switched on) or below $V_{PORDNSRAM}$ level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the V_{CCINT} and V_{CCIO} voltage levels. $V_{PORDNBG}$ and $V_{PORDNSRAM}$ are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet.

Note that once a ZE or HE device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a minimal, low power POR circuit is still operational (this corresponds to the $V_{PORDNSRAM}$ reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the V_{CC} supply dropping below V_{CC} (min) they should not shut down the bandgap or POR circuit.

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ. ⁴	Units
	Core Power Supply	LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
I _{CC}		LCMXO2-2000HC	4.80	mA
		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
I _{CCIO}	Bank Power Supply ⁵ $V_{CCIO} = 2.5 V$	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. $T_J = 25$ °C, power supplies at nominal voltage.

6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

Typical Building Block Function Performance – HC/HE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		·
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions	·	·
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions	·	·
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

			-	-3	-2		-1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDR4	Inputs with Clock and Data Cer	ntered at Pin Using PC	LK Pin fo	or Clock	Input –	GDDRX4	LRX.EC	LK.Cent	ered ^{9, 12}
t _{SU}	Input Data Setup Before ECLK		0.434		0.535		0.630	—	ns
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.385		0.395		0.463	—	ns
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only'		210		176	—	146	MHz
f _{SCLK}	SCLK Frequency		—	53		44	—	37	MHz
7:1 LVDS Inp	uts – GDDR71_RX.ECLK.7.1 ^{9, 1}	2							
t _{DVA}	Input Data Valid After ECLK		—	0.307		0.316	—	0.326	UI
t _{DVE}	Input Data Hold After ECLK		0.662		0.650		0.649	—	UI
f _{DATA}	DDR71 Serial Input Data Speed	MachXO2-640U, MachXO2-1200/U	—	420	_	352	_	292	Mbps
f _{DDR71}	DDR71 ECLK Frequency	and larger devices, bottom side only ¹¹		210		176	—	146	MHz
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)		_	60	_	50	_	42	MHz
Generic DDR	Outputs with Clock and Data A	ligned at Pin Using PC	LK Pin f	for Clock	k Input –	GDDRX	(1_TX.S	CLK.Aliç	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output		—	0.850	—	0.910	—	0.970	ns
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides		0.850	_	0.910	_	0.970	ns
f _{DATA}	DDRX1 Output Data Speed			140	—	116		98	Mbps
f _{DDRX1}	DDRX1 SCLK frequency			70		58		49	MHz
Generic DDR	Outputs with Clock and Data Ce	ntered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}
t _{DVB}	Output Data Valid Before CLK Output		2.720	_	3.380	_	4.140	_	ns
t _{DVA}	Output Data Valid After CLK Output	All MachXO2	2.720	_	3.380	_	4.140	_	ns
f _{DATA}	DDRX1 Output Data Speed	devices, all sides		140	—	116		98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)			70	_	58	_	49	MHz
Generic DDR	X2 Outputs with Clock and Data	Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}
t _{DIA}	Output Data Invalid After CLK Output			0.270	_	0.300	_	0.330	ns
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U	_	0.270	_	0.300	_	0.330	ns
f _{DATA}	DDRX2 Serial Output Data Speed	and larger devices, top side only		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK frequency	1	—	140	—	117	—	97	MHz
f _{SCLK}	SCLK Frequency			70		59	_	49	MHz

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz
fout	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz
f _{OUT2}	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz
f _{VCO}	PLL VCO Frequency		200	800	MHz
f _{PFD}	Phase Detector Input Frequency		7	400	MHz
AC Characteri	stics				
t _{DT}	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%
t _{DT_TRIM} ⁷	Edge Duty Trim Accuracy		-75	75	%
t _{PH} ⁴	Output Phase Accuracy		-6	6	%
	Output Cleak Pariad littar	f _{OUT} > 100 MHz	—	150	ps p-p
		f _{OUT} < 100 MHz	—	0.007	UIPP
		f _{OUT} > 100 MHz	—	180	ps p-p
		f _{OUT} < 100 MHz	—	0.009	UIPP
. 1.8	Output Clask Phase litter	f _{PFD} > 100 MHz	—	160	ps p-p
^I OPJIT	Output Clock Phase Jitter	f _{PFD} < 100 MHz	—	0.011	UIPP
	Output Clock Devied Litter (Exectional N)	f _{OUT} > 100 MHz	—	230	ps p-p
	Output Clock Period Jiller (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p
	(Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9		ns
tLOCK ^{2, 5}	PLL Lock-in Time		—	15	ms
t _{UNLOCK}	PLL Unlock Time		—	50	ns
+ 6	Input Clock Pariod litter	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p
ЧРЈІТ		f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{STABLE} ⁵	STANDBY High to PLL Stable		—	15	ms
t _{RST}	RST/RESETM Pulse Width		1	_	ns
t _{RSTREC}	RST Recovery Time		1	—	ns
t _{RST_DIV}	RESETC/D Pulse Width		10	—	ns
t _{RSTREC_DIV}	RESETC/D Recovery Time		1	—	ns
t _{ROTATE} -SETUP	PHASESTEP Setup Time		10	—	ns

Over Recommended Operating Conditions

sysCONFIG Port Timing Specifications

Symbol	Pa	irameter	Min.	Max.	Units
All Configuration Modes			1		
t _{PRGM}	PROGRAMN low p	ulse accept	55		ns
t _{PRGMJ}	PROGRAMN low p	ulse rejection	—	25	ns
t _{INITL}	INITN low time	LCMXO2-256	—	30	μs
		LCMXO2-640	—	35	μs
		LCMXO2-640U/ LCMXO2-1200	_	55	μs
		LCMXO2-1200U/ LCMXO2-2000	—	70	μs
		LCMXO2-2000U/ LCMXO2-4000	—	105	μs
		LCMXO2-7000	—	130	μs
t _{DPPINIT}	PROGRAMN low to	D INITN Iow	—	150	ns
t _{DPPDONE}	PROGRAMN low to	DONE low	—	150	ns
t _{IODISS}	PROGRAMN low to	o I/O disable	—	120	ns
Slave SPI	·				
f _{MAX}	CCLK clock freque	CCLK clock frequency			MHz
t _{ССLКН}	CCLK clock pulse v	width high	7.5	—	ns
t _{CCLKL}	CCLK clock pulse v	width low	7.5	_	ns
t _{STSU}	CCLK setup time		2	—	ns
t _{STH}	CCLK hold time		0	—	ns
t _{STCO}	CCLK falling edge	to valid output	—	10	ns
t _{STOZ}	CCLK falling edge	to valid disable	—	10	ns
t _{STOV}	CCLK falling edge	to valid enable	—	10	ns
t _{SCS}	Chip select high tim	ne	25	—	ns
t _{SCSS}	Chip select setup ti	me	3	—	ns
t _{SCSH}	Chip select hold tim	ne	3	—	ns
Master SPI					
f _{MAX}	MCLK clock freque	ncy	—	133	MHz
t _{MCLKH}	MCLK clock pulse v	width high	3.75	—	ns
t _{MCLKL}	MCLK clock pulse v	width low	3.75	—	ns
t _{STSU}	MCLK setup time		5		ns
t _{STH}	MCLK hold time		1		ns
t _{CSSPI}	INITN high to chip	select low	100	200	ns
t _{MCLK}	INITN high to first N	MCLK edge	0.75	1	μs

		M	achXO2-120	0		MachXO2-1200U
	100 TQFP	132 csBGA	144 TQFP	25 WLCSP	32 QFN ¹	256 ftBGA
General Purpose I/O per Bank						
Bank 0	18	25	27	11	9	50
Bank 1	21	26	26	0	2	52
Bank 2	20	28	28	7	9	52
Bank 3	20	25	26	0	2	16
Bank 4	0	0	0	0	0	16
Bank 5	0	0	0	0	0	20
Total General Purpose Single Ended I/O	79	104	107	18	22	206
Differential I/O per Bank						
Bank 0	9	13	14	5	4	25
Bank 1	10	13	13	0	1	26
Bank 2	10	14	14	2	4	26
Bank 3	10	12	13	0	1	8
Bank 4	0	0	0	0	0	8
Bank 5	0	0	0	0	0	10
Total General Purpose Differential I/O	39	52	54	7	10	103
Dual Function I/O	31	33	33	18	22	33
High-speed Differential I/O						1
Bank 0	4	7	7	0	0	14
Gearboxes						1
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	4	7	7	0	0	14
Number of 7:1 or 8:1 Input Gearbox Avail- able (Bank 2)	5	7	7	0	2	14
DQS Groups						
Bank 1	1	2	2	0	0	2
VCCIO Pins	1	1				1
Bank 0	2	3	3	1	2	4
Bank 1	2	3	3	0	1	4
Bank 2	2	3	3	1	2	4
Bank 3	3	3	3	0	1	1
Bank 4	0	0	0	0	0	2
Bank 5	0	0	0	0	0	1
	I			Гг		Γ
VCC	2	4	4	2	2	8
GND	8	10	12	2	2	24
NC	1	1	8	0	0	1
Reserved for Configuration	1	1	1	1	1	1
Total Count of Bonded Pins	100	132	144	25	32	256

1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.

				MachX	02-4000			
	84 QFN	132 csBGA	144 TQFP	184 csBGA	256 caBGA	256 ftBGA	332 caBGA	484 fpBGA
General Purpose I/O per Bank								
Bank 0	27	25	27	37	50	50	68	70
Bank 1	10	26	29	37	52	52	68	68
Bank 2	22	28	29	39	52	52	70	72
Bank 3	0	7	9	10	16	16	24	24
Bank 4	9	8	10	12	16	16	16	16
Bank 5	0	10	10	15	20	20	28	28
Total General Purpose Single Ended I/O	68	104	114	150	206	206	274	278
Differential I/O per Bank								
Bank 0	13	13	14	18	25	25	34	35
Bank 1	4	13	14	18	26	26	34	34
Bank 2	11	14	14	19	26	26	35	36
Bank 3	0	3	4	4	8	8	12	12
Bank 4	4	4	5	6	8	8	8	8
Bank 5	0	5	5	7	10	10	14	14
Total General Purpose Differential I/O	32	52	56	72	103	103	137	139
Dual Function I/O	28	37	37	37	37	37	37	37
High-speed Differential I/O								
Bank 0	8	8	9	8	18	18	18	18
Gearboxes					-			-
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	8	8	9	9	18	18	18	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	11	14	14	12	18	18	18	18
DQS Groups				-				
Bank 1	1	2	2	2	2	2	2	2
VCCIO Pins								
Bank 0	3	3	3	3	4	4	4	10
Bank 1	1	3	3	3	4	4	4	10
Bank 2	2	3	3	3	4	4	4	10
Bank 3	1	1	1	1	1	1	2	3
Bank 4	1	1	1	1	2	2	1	4
Bank 5	1	1	1	1	1	1	2	3
VCC	4	4	4	4	8	8	8	12
GND	4	10	12	16	24	24	27	48
NC	1	1	1	1	1	1	5	105
Reserved for configuration	1	1	1	1	1	1	1	1
Total Count of Bonded Pins	84	132	144	184	256	256	332	484

For Further Information

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software

Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256ZE-1SG32C	256	1.2 V	-1	Halogen-Free QFN	32	COM
LCMXO2-256ZE-2SG32C	256	1.2 V	-2	Halogen-Free QFN	32	COM
LCMXO2-256ZE-3SG32C	256	1.2 V	-3	Halogen-Free QFN	32	COM
LCMXO2-256ZE-1UMG64C	256	1.2 V	-1	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-2UMG64C	256	1.2 V	-2	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-3UMG64C	256	1.2 V	-3	Halogen-Free ucBGA	64	COM
LCMXO2-256ZE-1TG100C	256	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-2TG100C	256	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-3TG100C	256	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-256ZE-1MG132C	256	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-256ZE-2MG132C	256	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-256ZE-3MG132C	256	1.2 V	-3	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640ZE-1TG100C	640	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-2TG100C	640	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-3TG100C	640	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-640ZE-1MG132C	640	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-640ZE-2MG132C	640	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-640ZE-3MG132C	640	1.2 V	-3	Halogen-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1SG32C	1280	1.2 V	-1	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-2SG32C	1280	1.2 V	-2	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-3SG32C	1280	1.2 V	-3	Halogen-Free QFN	32	COM
LCMXO2-1200ZE-1TG100C	1280	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-2TG100C	1280	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-3TG100C	1280	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-1200ZE-1MG132C	1280	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-2MG132C	1280	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-3MG132C	1280	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-1200ZE-1TG144C	1280	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-2TG144C	1280	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-1200ZE-3TG144C	1280	1.2 V	-3	Halogen-Free TQFP	144	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR11	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR11	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR1 ¹	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR1 ¹	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR11	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR11	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR11	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND