
E · / Fat ice Semiconductor Corporation - <u>LCMXO2-7000HC-5BG332I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	858
Number of Logic Elements/Cells	6864
Total RAM Bits	245760
Number of I/O	278
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	332-FBGA
Supplier Device Package	332-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-7000hc-5bg332i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/down counter with asynchronous clear
- Up/down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals.

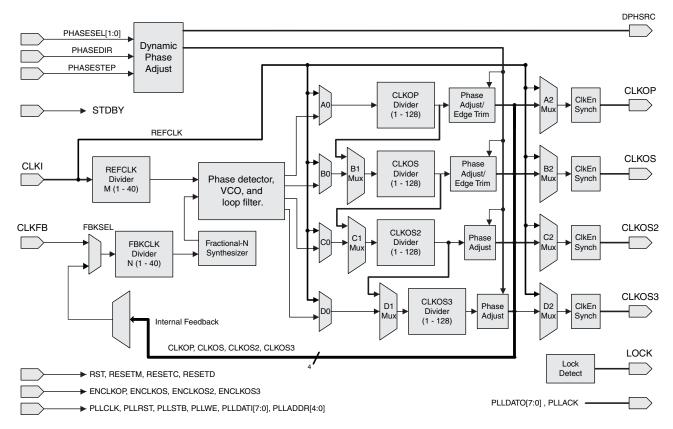
MachXO2 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO2 devices, please see TN1201, Memory Usage Guide for MachXO2 Devices.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR 16x4	PDPR 16x4			
Number of slices	3	3			
Note: SPB = Single Port BAM, PDPB = Pseudo Dual Port BAM					

ote: SPR = Single Port RAM, PDPR = Pseudo Dual



This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the $t_{I,OCK}$ parameter has been satisfied.

The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the t_{LOCK} parameter has been satisfied. The timing parameters for the PLL are shown in the sysCLOCK PLL Timing table.

For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide.

Figure 2-7. PLL Diagram

Table 2-4 provides signal descriptions of the PLL block.

Table 2-4. PLL Signal	Descriptions
-----------------------	--------------

Port Name	I/O	Description	
CLKI	I	Input clock to PLL	
CLKFB	I	eedback clock	
PHASESEL[1:0]	I	Select which output is affected by Dynamic Phase adjustment ports	
PHASEDIR	I	Dynamic Phase adjustment direction	
PHASESTEP	I	Dynamic Phase step – toggle shifts VCO phase adjust by one step.	

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Programmable I/O Cells (PIC)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair.

The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support.

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

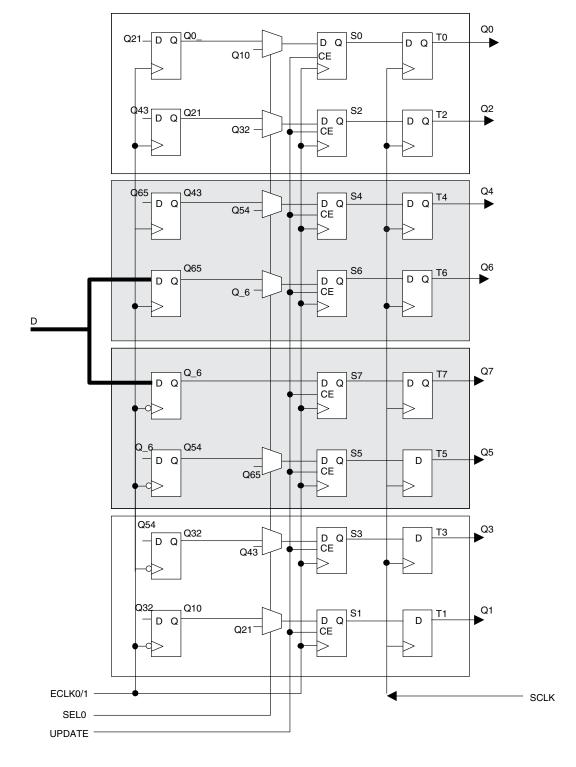


Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

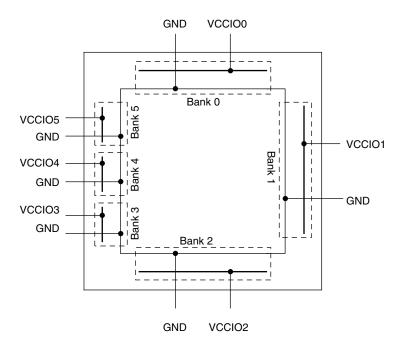
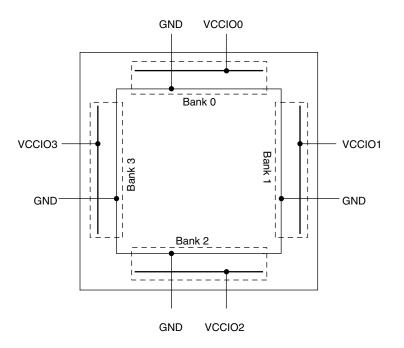



Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes:

- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B)
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

Figure 2-22. SPI Core Block Diagram

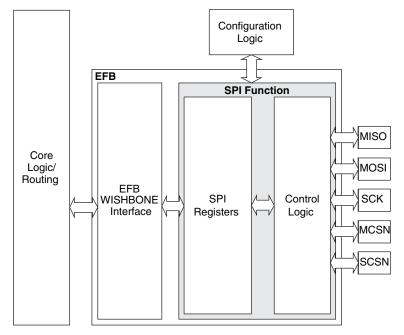


Table 2-16 describes the signals interfacing with the SPI cores.

Table 2-16. SPI Core Signal Description

Signal Name	I/O	Master/Slave	Description	
spi_csn[0]	0	Master	SPI master chip-select output	
spi_csn[17]	0	Master	Additional SPI chip-select outputs (total up to eight slaves)	
spi_scsn	I	Slave	SPI slave chip-select input	
spi_irq	0	Master/Slave	Interrupt request	
spi_clk	I/O	Master/Slave	SPI clock. Output in master mode. Input in slave mode.	
spi_miso	I/O	Master/Slave	SPI data. Input in master mode. Output in slave mode.	
spi_mosi	I/O	Master/Slave	SPI data. Output in master mode. Input in slave mode.	
ufm_sn	I	Slave	Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM).	
cfg_stdby	0	Master/Slave	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.	
cfg_wake	0	Master/Slave	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, SPI Tab.	

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)	_	_	+175	μΑ
I _{IL} , I _{IH} ^{1, 4}		Clamp OFF and $V_{IN} = V_{CCIO}$	-10		10	μA
	Input or I/O Leakage	Clamp OFF and V _{CCIO} –0.97 V < V _{IN} < V _{CCIO}	-175	_	—	μA
		Clamp OFF and 0 V < V _{IN} < V _{CCIO} –0.97 V			10	μA
		Clamp OFF and V _{IN} = GND	—	_	10	μΑ
		Clamp ON and 0 V < V_{IN} < V_{CCIO}	_	_	10	μΑ
I _{PU}	I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) < V_{IN} < V_{CCIO}	30		305	μA
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		_	μA
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30		_	μA
I _{BHLO}	Bus Hold Low Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_		305	μA
I _{BHHO}	Bus Hold High Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_		-309	μA
V _{BHT} ³	Bus Hold Trip Points		V _{IL} (MAX)		V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5	9	pF
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5.5	7	pF
		V _{CCIO} = 3.3 V, Hysteresis = Large	_	450	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Large	_	250	—	mV
V _{HYST}		V _{CCIO} = 1.8 V, Hysteresis = Large	_	125	—	mV
	Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large	_	100	—	mV
	Trigger Inputs ⁵	V _{CCIO} = 3.3 V, Hysteresis = Small	—	250	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Small	—	150	—	mV
		V _{CCIO} = 1.8 V, Hysteresis = Small	—	60	—	mV
		V _{CCIO} = 1.5 V, Hysteresis = Small	_	40	—	mV

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to-low transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.

sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	V _{IL}		V _{IH}		V _{OH} Min.	l _{OL} Max.⁴	l _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	(V)	(mA)	(mA)
				4	-4			
			2.0	3.6			8	-8
LVCMOS 3.3	-0.3	0.8			0.4	$V_{CCIO} - 0.4$	12	-12
LVTTL	0.0	0.0	2.0	0.0			16	-16
							24	-24
					0.2	V _{CCIO} – 0.2	0.1	-0.1
							4	-4
					0.4	V _{CCIO} – 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	VCCIO 0.4	12	-12
							16	-16
					0.2	V _{CCIO} – 0.2	0.1	-0.1
							4	-4
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	$V_{CCIO} - 0.4$	8	-8
	-0.5	0.33 v CCIO	0.03 v CCIO	5.0			12	-12
					0.2	V _{CCIO} – 0.2	0.1	-0.1
					0.4	V _{CCIO} – 0.4	4	-4
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	VCCIO - 0.4	8	-8
					0.2	V _{CCIO} – 0.2	0.1	-0.1
		0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	4	-2
LVCMOS 1.2	-0.3				0.4		8	-6
					0.2	V _{CCIO} – 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5
SSTL25 Class I	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	8	8
SSTL25 Class II	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	NA	NA	NA	NA
SSTL18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	0.40	V _{CCIO} - 0.40	8	8
SSTL18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	NA	NA	NA	NA
HSTL18 Class I	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	V _{CCIO} - 0.40	8	8
HSTL18 Class II	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS25R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units	
Basic Functions			
16-bit decoder	13.9	ns	
4:1 MUX	10.9	ns	
16:1 MUX	12.0	ns	

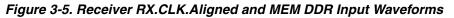
Register-to-Register Performance

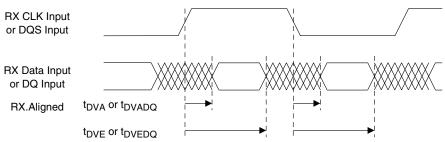
–3 Timing	Units
191	MHz
134	MHz
148	MHz
77	MHz
90	MHz
214	MHz
	191 134 148 77 90

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.


Maximum sysIO Buffer Performance


I/O Standard	Max. Speed	Units
LVDS25	400	MHz
LVDS25E	150	MHz
RSDS25	150	MHz
RSDS25E	150	MHz
BLVDS25	150	MHz
BLVDS25E	150	MHz
MLVDS25	150	MHz
MLVDS25E	150	MHz
LVPECL33	150	MHz
LVPECL33E	150	MHz
SSTL25_I	150	MHz
SSTL25_II	150	MHz
SSTL25D_I	150	MHz
SSTL25D_II	150	MHz
SSTL18_I	150	MHz
SSTL18_II	150	MHz
SSTL18D_I	150	MHz
SSTL18D_II	150	MHz
HSTL18_I	150	MHz
HSTL18_II	150	MHz
HSTL18D_I	150	MHz
HSTL18D_II	150	MHz
PCI33	134	MHz
LVTTL33	150	MHz
LVTTL33D	150	MHz
LVCMOS33	150	MHz
LVCMOS33D	150	MHz
LVCMOS25	150	MHz
LVCMOS25D	150	MHz
LVCMOS25R33	150	MHz
LVCMOS18	150	MHz
LVCMOS18D	150	MHz
LVCMOS18R33	150	MHz
LVCMOS18R25	150	MHz
LVCMOS15	150	MHz
LVCMOS15D	150	MHz
LVCMOS15R33	150	MHz
LVCMOS15R25	150	MHz
LVCMOS12	91	MHz
LVCMOS12D	91	MHz

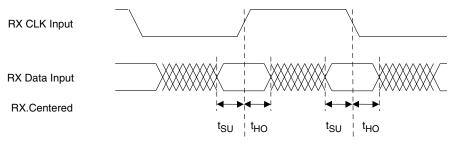

			-6		-	-5	-	-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Generic DDF	R4 Inputs with Clock and Data A	Aligned at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}	
t _{DVA}	Input Data Valid After ECLK			0.290	_	0.320		0.345	UI	
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.739	—	0.699		0.703	—	UI	
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps	
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378		315		262	MHz	
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz	
	Generic DDR4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Centered ^{9, 12}									
t _{SU}	Input Data Setup Before ECLK		0.233	—	0.219	—	0.198	—	ns	
t _{HO}	Input Data Hold After ECLK	MachXO2-640U,	0.287	—	0.287		0.344	—	ns	
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	756	_	630	_	524	Mbps	
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only.11		378	—	315		262	MHz	
f _{SCLK}	SCLK Frequency			95	—	79	—	66	MHz	
7:1 LVDS In	puts (GDDR71_RX.ECLK.7:1) ^{9,}	12								
t _{DVA}	Input Data Valid After ECLK			0.290		0.320		0.345	UI	
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U, MachXO2-1200/U and	0.739	—	0.699		0.703	—	UI	
f _{DATA}	DDR71 Serial Input Data Speed		_	756	_	630	_	524	Mbps	
f _{DDR71}	DDR71 ECLK Frequency	larger devices, bottom side only.11		378		315		262	MHz	
f _{CLKIN}	7:1 Input Clock Frequency (SCLK) (minimum limited by PLL)		_	108	_	90	_	75	MHz	
Generic DDF	R Outputs with Clock and Data	Aligned at Pin Using PC	LK Pin f	for Clock	k Input –	GDDR	(1_TX.S	CLK.Ali	gned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output			0.520	_	0.550	_	0.580	ns	
t _{DIB}	Output Data Invalid Before CLK Output	All MachXO2 devices, all sides.	_	0.520	_	0.550	_	0.580	ns	
f _{DATA}	DDRX1 Output Data Speed			300		250		208	Mbps	
f _{DDRX1}	DDRX1 SCLK frequency	-		150	—	125		104	MHz	
	Outputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_TX.SC	LK.Cen	tered ^{9, 12}	
t _{DVB}	Output Data Valid Before CLK Output		1.210	_	1.510	_	1.870	_	ns	
t _{DVA}	Output Data Valid After CLK Output	All MachXO2 devices,	1.210	_	1.510	_	1.870	_	ns	
f _{DATA}	DDRX1 Output Data Speed	all sides.		300	—	250	_	208	Mbps	
f _{DDRX1}	DDRX1 SCLK Frequency (minimum limited by PLL)	-		150	_	125	_	104	MHz	
Generic DDF	X2 Outputs with Clock and Data	a Aligned at Pin Using P	CLK Pin	for Cloc	k Input	- GDDR	X2_TX.E	CLK.Ali	gned ^{9, 12}	
t _{DIA}	Output Data Invalid After CLK Output		_	0.200	_	0.215	_	0.230	ns	
t _{DIB}	Output Data Invalid Before CLK Output	MachXO2-640U, MachXO2-1200/U and	_	0.200	_	0.215	_	0.230	ns	
f _{DATA}	DDRX2 Serial Output Data Speed	larger devices, top side only.	_	664	_	554	_	462	Mbps	
f _{DDRX2}	DDRX2 ECLK frequency	1		332	—	277	_	231	MHz	
f _{SCLK}	SCLK Frequency	1	—	166	—	139	_	116	MHz	

Figure 3-6. Receiver RX.CLK.Centered Waveforms

Figure 3-7. Transmitter TX.CLK.Aligned Waveforms

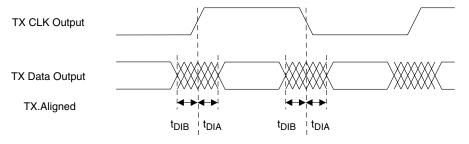
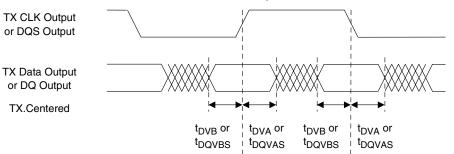



Figure 3-8. Transmitter TX.CLK.Centered and MEM DDR Output Waveforms

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		7	400	MHz
fout	Output Clock Frequency (CLKOP, CLKOS, CLKOS2)		1.5625	400	MHz
fout2	Output Frequency (CLKOS3 cascaded from CLKOS2)		0.0122	400	MHz
f _{VCO}	PLL VCO Frequency		200	800	MHz
f _{PFD}	Phase Detector Input Frequency		7	400	MHz
AC Characteri	stics	•			
t _{DT}	Output Clock Duty Cycle	Without duty trim selected ³	45	55	%
t _{DT_TRIM} ⁷	Edge Duty Trim Accuracy		-75	75	%
t _{PH} ⁴	Output Phase Accuracy		-6	6	%
	Output Clask Daviad Litter	f _{OUT} > 100 MHz	—	150	ps p-p
	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.007	UIPP
	Output Olaski Ousla ta susla littari	f _{OUT} > 100 MHz	—	180	ps p-p
t _{opjit} 1,8	Output Clock Cycle-to-cycle Jitter	f _{OUT} < 100 MHz	_	0.009	UIPP
	Quitaut Clask Dhass litter	f _{PFD} > 100 MHz	_	160	ps p-p
	Output Clock Phase Jitter	f _{PFD} < 100 MHz	_	0.011	UIPP
		f _{OUT} > 100 MHz	_	230	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	—	230	ps p-p
	(Fractional-N)	f _{OUT} < 100 MHz	—	0.12	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-120	120	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	0.9	—	ns
tLOCK ^{2, 5}	PLL Lock-in Time		—	15	ms
t _{UNLOCK}	PLL Unlock Time		—	50	ns
. 6	Innut Clask Daviad Littar	f _{PFD} ≥ 20 MHz	—	1,000	ps p-p
t _{IPJIT} ⁶	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{STABLE} ⁵	STANDBY High to PLL Stable		_	15	ms
t _{RST}	RST/RESETM Pulse Width		1		ns
t _{RSTREC}	RST Recovery Time		1		ns
t _{RST_DIV}	RESETC/D Pulse Width		10		ns
t _{RSTREC_DIV}	RESETC/D Recovery Time		1		ns
t _{ROTATE-SETUP}	PHASESTEP Setup Time		10		ns

Over Recommended Operating Conditions

sysCLOCK PLL Timing (Continued)

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
t _{ROTATE_WD}	PHASESTEP Pulse Width		4	_	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum f_{PFD} As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, or when reserved as INITn in user mode, this pin has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress. During configuration, or when reserved as DONE in user mode, this pin has an active pull-up.
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SN	I	Slave SPI active low chip select input.
CSSPIN	I/O	Master SPI active low chip select output.
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.
SCL	I/O	Slave I ² C clock input and master I ² C clock output.
SDA	I/O	Slave I ² C data input and master I ² C data output.

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256ZE-1SG32I	256	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-256ZE-2SG32I	256	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-256ZE-3SG32I	256	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-256ZE-1UMG64I	256	1.2 V	-1	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-2UMG64I	256	1.2 V	-2	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-3UMG64I	256	1.2 V	-3	Halogen-Free ucBGA	64	IND
LCMXO2-256ZE-1TG100I	256	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-2TG100I	256	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-3TG100I	256	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-256ZE-1MG132I	256	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-2MG132I	256	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-256ZE-3MG132I	256	1.2 V	-3	Halogen-Free csBGA	132	IND
Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640ZE-1TG100I	640	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-2TG100I	640	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-3TG100I	640	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-640ZE-1MG132I	640	1.2 V		Halogen-Free csBGA	132	IND
LCMXO2-640ZE-2MG132I	640	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-640ZE-3MG132I	640	1.2 V	-3	Halogen-Free csBGA	132	IND
	0.0					
Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1UWG25ITR1	1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR50 ³	³ 1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1UWG25ITR1K	² 1280	1.2 V	-1	Halogen-Free WLCSP	25	IND
LCMXO2-1200ZE-1SG32I	1280	1.2 V	-1	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-2SG32I	1280	1.2 V	-2	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-3SG32I	1280	1.2 V	-3	Halogen-Free QFN	32	IND
LCMXO2-1200ZE-1TG100I	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100I	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100I	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132I	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132I	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132I	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144I	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144I	1280	1.2 V	-2	Halogen-Free TQFP	144	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-4MG132I	4320	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-5MG132I	4320	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-6MG132I	4320	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-4000HE-4TG144I	4320	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-5TG144I	4320	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-6TG144I	4320	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-4000HE-4MG184I	4320	1.2 V	-4	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-5MG184I	4320	1.2 V	-5	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-6MG184I	4320	1.2 V	-6	Halogen-Free csBGA	184	IND
LCMXO2-4000HE-4BG256I	4320	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-5BG256I	4320	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-6BG256I	4320	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-4000HE-4FTG256I	4320	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-5FTG256I	4320	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-6FTG256I	4320	1.2 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-4000HE-4BG332I	4320	1.2 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-5BG332I	4320	1.2 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-6BG332I	4320	1.2 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-4000HE-4FG484I	4320	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-4000HE-5FG484I	4320	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-4000HE-6FG484I	4320	1.2 V	-6	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000HE-4TG144I	6864	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-5TG144I	6864	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-6TG144I	6864	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-7000HE-4BG256I	6864	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-5BG256I	6864	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-6BG256I	6864	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-7000HE-4FTG256I	6864	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-5FTG256I	6864	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-6FTG256I	6864	1.2 V	-6	Halogen-Free ftBGA	256	IND
LCMXO2-7000HE-4BG332I	6864	1.2 V	-4	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-5BG332I	6864	1.2 V	-5	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-6BG332I	6864	1.2 V	-6	Halogen-Free caBGA	332	IND
LCMXO2-7000HE-4FG484I	6864	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-7000HE-5FG484I	6864	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-7000HE-6FG484I	6864	1.2 V	-6	Halogen-Free fpBGA	484	IND

R1 Device Specifications

The LCMXO2-1200ZE/HC "R1" devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices.

- The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I²C ports.
- The on-chip differential input termination resistor value is higher than intended. It is approximately 200Ω as opposed to the intended 100Ω. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software.
- Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result.
- Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details:

Condition	Clamp	Pad Rising IIH Max.	Pad Falling IIH Min.	Steady State Pad High IIH	Steady State Pad Low IIL
VPAD > VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD = VCCIO	ON	10 µA	–10 μA	10 µA	10 µA
VPAD = VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD < VCCIO	OFF	10 µA	–10 μA	10 µA	10 µA

- The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt.
- In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization.
- When using the hard I²C IP core, the I²C status registers I2C_1_SR and I2C_2_SR may not update correctly.
- PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10 μsec before returning low.
- Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3 V or 2.5 V supply.

MachXO2 Family Data Sheet Supplemental Information

April 2012

Data Sheet DS1035

For Further Information

A variety of technical notes for the MachXO2 family are available on the Lattice web site.

- TN1198, Power Estimation and Management for MachXO2 Devices
- TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide
- TN1201, Memory Usage Guide for MachXO2 Devices
- TN1202, MachXO2 sysIO Usage Guide
- TN1203, Implementing High-Speed Interfaces with MachXO2 Devices
- TN1204, MachXO2 Programming and Configuration Usage Guide
- TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices
- TN1206, MachXO2 SRAM CRC Error Detection Usage Guide
- TN1207, Using TraceID in MachXO2 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices
- AN8066, Boundary Scan Testability with Lattice sysIO Capability
- MachXO2 Device Pinout Files
- Thermal Management document
- · Lattice design tools

For further information on interface standards, refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org
- PCI: www.pcisig.com

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.