
Evy Fattce Semiconductor Corporation - <u>LCMX02-7000HC-6FG484C Datasheet</u>

Welcome to E-XFL.COM

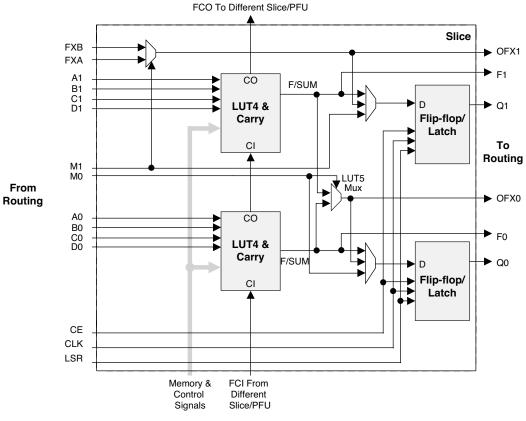
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	858
Number of Logic Elements/Cells	6864
Total RAM Bits	245760
Number of I/O	334
Number of Gates	-
Voltage - Supply	2.375V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-7000hc-6fg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows:

- WCK is CLK
 WRE is from LSR
- DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
- WAD [A:D] is a 4-bit address from slice 2 LUT input

 Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multi-purpose input
Input	Control signal	CE	Clock enable
Input	Control signal	LSR	Local set/reset
Input	Control signal	CLK	System clock
Input	Inter-PFU signal	FCIN	Fast carry in ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Fast carry out ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width.

The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Table 2-11. I/O Support Device by Device

	MachXO2-256, MachXO2-640	MachXO2-640U, MachXO2-1200	MachXO2-1200U MachXO2-2000/U, MachXO2-4000, MachXO2-7000
Number of I/O Banks	4	4	6
		Single-ended (all I/O banks)	Single-ended (all I/O banks)
Type of Input Buffers	Single-ended (all I/O banks) Differential Receivers (all I/O	Differential Receivers (all I/O banks)	Differential Receivers (all I/O banks)
	banks)	Differential input termination (bottom side)	Differential input termination (bottom side)
	Single-ended buffers with	Single-ended buffers with complementary outputs (all I/O banks)	Single-ended buffers with complementary outputs (all I/O banks)
Types of Output Buffers	complementary outputs (all I/O banks)	Differential buffers with true LVDS outputs (50% on top side)	Differential buffers with true LVDS outputs (50% on top side)
Differential Output Emulation Capability	All I/O banks	All I/O banks	All I/O banks
PCI Clamp Support	No	Clamp on bottom side only	Clamp on bottom side only

Table 2-12. Supported Input Standards

		V	CCIO (Ty	p.)	
Input Standard	3.3 V	2.5 V	1.8 V	1.5	1.2 V
Single-Ended Interfaces		•	•		
LVTTL	✓	√ ²	√ ²	√ ²	
LVCMOS33	✓	√ ²	√ ²	√ ²	
LVCMOS25	√ ²	✓	√ ²	√ ²	
LVCMOS18	√ ²	√ ²	✓	√ ²	
LVCMOS15	√ ²	√ ²	√ ²	~	√ ²
LVCMOS12	√ ²	√ ²	√ ²	√ ²	✓
PCI ¹	✓				
SSTL18 (Class I, Class II)	1	✓	✓		
SSTL25 (Class I, Class II)	1	✓			
HSTL18 (Class I, Class II)	✓	✓	✓		
Differential Interfaces		•			
LVDS	✓	✓			
BLVDS, MVDS, LVPECL, RSDS	✓	✓			
MIPI ³	✓	✓			
Differential SSTL18 Class I, II	✓	✓	✓		
Differential SSTL25 Class I, II	✓	✓			
Differential HSTL18 Class I, II	✓	✓	✓		

1. Bottom banks of MachXO2-640U, MachXO2-1200/U and higher density devices only.

2. Reduced functionality. Refer to TN1202, MachXO2 sysIO Usage Guide for more detail.

3. These interfaces can be emulated with external resistors in all devices.

Table 2-13. Supported Output Standards

Output Standard	V _{CCIO} (Typ.)
Single-Ended Interfaces	
LVTTL	3.3
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
LVCMOS15	1.5
LVCMOS12	1.2
LVCMOS33, Open Drain	
LVCMOS25, Open Drain	
LVCMOS18, Open Drain	
LVCMOS15, Open Drain	
LVCMOS12, Open Drain	
PCI33	3.3
SSTL25 (Class I)	2.5
SSTL18 (Class I)	1.8
HSTL18(Class I)	1.8
Differential Interfaces	
LVDS ^{1, 2}	2.5, 3.3
BLVDS, MLVDS, RSDS ²	2.5
LVPECL ²	3.3
MIPI ²	2.5
Differential SSTL18	1.8
Differential SSTL25	2.5
Differential HSTL18	1.8

1. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices.

sysIO Buffer Banks

The numbers of banks vary between the devices of this family. MachXO2-1200U, MachXO2-2000/U and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO2-1200 and lower density devices have four banks (one bank per side). Figures 2-18 and 2-19 show the sysIO banks and their associated supplies for all devices.

Hot Socketing

The MachXO2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO2 ideal for many multiple power supply and hot-swap applications.

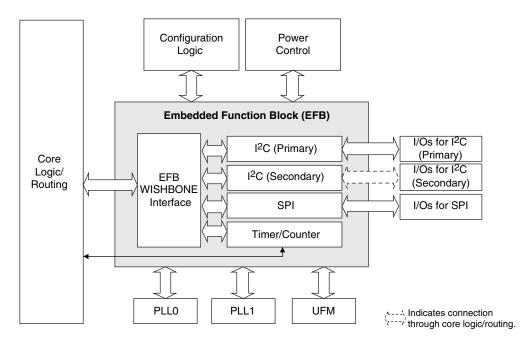
On-chip Oscillator

Every MachXO2 device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal MCLK frequency of 2.08 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz.

Table 2-14 lists all the available MCLK frequencies.

Table 2-14. Available MCLK Frequencies


MCLK (MHz, Nominal)	MCLK (MHz, Nominal)	MCLK (MHz, Nominal)
2.08 (default)	9.17	33.25
2.46	10.23	38
3.17	13.3	44.33
4.29	14.78	53.2
5.54	20.46	66.5
7	26.6	88.67
8.31	29.56	133

Embedded Hardened IP Functions and User Flash Memory

All MachXO2 devices provide embedded hardened functions such as SPI, I²C and Timer/Counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-20.

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and $V_{CCIO0})$	0.9	_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	1.5	_	2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CCINT})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring V_{CC})	0.98	_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring $V_{CCINT})$	_	0.6		V
V _{PORDNSRAMEXT}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	_	0.96	—	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for HC devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Programming/Erase Specifications

Symbol	Parameter	Min.	Max. ¹	Units
N _{PROGCYC}	Flash Programming cycles per t _{RETENTION}	—	10,000	Cycles
	Flash functional programming cycles	—	100,000	Oycles
	Data retention at 100 °C junction temperature	10	—	Years
RETENTION	Data retention at 85 °C junction temperature	20	_	Teals

1. Maximum Flash memory reads are limited to 7.5E13 cycles over the lifetime of the product.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Max.	Units	
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ	

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance

Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.6	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	_
LVTTL	3.135	3.3	3.6	—	—	—
PCI ³	3.135	3.3	3.6	—	—	—
SSTL25	2.375	2.5	2.625	1.15	1.25	1.35
SSTL18	1.71	1.8	1.89	0.833	0.9	0.969
HSTL18	1.71	1.8	1.89	0.816	0.9	1.08
LVCMOS25R33	3.135	3.3	3.6	1.1	1.25	1.4
LVCMOS18R33	3.135	3.3	3.6	0.75	0.9	1.05
LVCMOS18R25	2.375	2.5	2.625	0.75	0.9	1.05
LVCMOS15R33	3.135	3.3	3.6	0.6	0.75	0.9
LVCMOS15R25	2.375	2.5	2.625	0.6	0.75	0.9
LVCMOS12R334	3.135	3.3	3.6	0.45	0.6	0.75
LVCMOS12R254	2.375	2.5	2.625	0.45	0.6	0.75
LVCMOS10R334	3.135	3.3	3.6	0.35	0.5	0.65
LVCMOS10R254	2.375	2.5	2.625	0.35	0.5	0.65
LVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	_
LVDS33 ^{1, 2}	3.135	3.3	3.6	—	—	—
LVPECL ¹	3.135	3.3	3.6	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—
RSDS ¹	2.375	2.5	2.625	—	—	—
SSTL18D	1.71	1.8	1.89	—	—	—
SSTL25D	2.375	2.5	2.625	—	—	
HSTL18D	1.71	1.8	1.89	—	—	—

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers.

3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.

4. Supported only for inputs and BIDIs for all ZE devices, and -6 speed grade for HE and HC devices.

sysIO Single-Ended DC Electrical Characteristics^{1, 2}

Input/Output	V	/ _{IL}	V _I	н	V _{OL} Max.	V _{OH} Min.	l _{OL} Max.⁴	I _{OH} Max.⁴
Standard	Min. (V) ³	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
							4	-4
						V _{CCIO} – 0.4	8	-8
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4		12	-12
LVTTL	0.0		2.0	0.0			16	-16
							24	-24
					0.2	V _{CCIO} – 0.2	0.1	-0.1
							4	-4
					0.4	V _{CCIO} – 0.4	8	-8
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	VCCIO 0.4	12	-12
							16	-16
					0.2	V _{CCIO} - 0.2	0.1	-0.1
							4	-4
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	$V_{CCIO} - 0.4$	8	-8
	-0.5	0.33 v CCIO	0.03 v CCIO	5.0			12	-12
					0.2	V _{CCIO} – 0.2	0.1	-0.1
					0.4	V _{CCIO} – 0.4	4	-4
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	VCCIO - 0.4	8	-8
					0.2	V _{CCIO} – 0.2	0.1	-0.1
					0.4	$V_{CCIO} - 0.4$	4	-2
LVCMOS 1.2	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6 0.4	V CCIO - 0.4	8	-6	
					0.2	V _{CCIO} – 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5
SSTL25 Class I	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	8	8
SSTL25 Class II	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	NA	NA	NA	NA
SSTL18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	0.40	V _{CCIO} - 0.40	8	8
SSTL18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	3.6	NA	NA	NA	NA
HSTL18 Class I	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	V _{CCIO} - 0.40	8	8
HSTL18 Class II	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS25R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS18R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS15R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	NA	NA	NA	NA
LVCMOS12R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain
LVCMOS12R25	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	16, 12, 8, 4	NA Open Drain
LVCMOS10R33	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.40	NA Open Drain	24, 16, 12, 8, 4	NA Open Drain

Typical Building Block Function Performance – ZE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	–3 Timing	Units
Basic Functions		
16-bit decoder	13.9	ns
4:1 MUX	10.9	ns
16:1 MUX	12.0	ns

Register-to-Register Performance

–3 Timing	Units					
191	MHz					
134	MHz					
148	MHz					
77	MHz					
90	MHz					
Distributed Memory Functions						
214	MHz					
	191 134 148 77 90					

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

				3		2		1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-256ZE	2.62	—	2.91	—	3.14	—	ns
		MachXO2-640ZE	2.56	—	2.85	—	3.08	—	ns
+	Clock to Data Setup – PIO	MachXO2-1200ZE	2.30		2.57		2.79		ns
t _{SU_DEL}	Input Register with Data Input Delay	MachXO2-2000ZE	2.25	—	2.50	—	2.70	—	ns
		MachXO2-4000ZE	2.39	—	2.60	—	2.76	—	ns
		MachXO2-7000ZE	2.17	—	2.33	—	2.43	—	ns
		MachXO2-256ZE	-0.44	—	-0.44	—	-0.44	—	ns
		MachXO2-640ZE	-0.43	—	-0.43	—	-0.43	—	ns
	Clock to Data Hold – PIO Input	MachXO2-1200ZE	-0.28	—	-0.28	—	-0.28	—	ns
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-4000ZE	-0.34	_	-0.34		-0.34		ns
		MachXO2-7000ZE	-0.21	_	-0.21		-0.21		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices		150	_	125	_	104	MHz
General I/O	Pin Parameters (Using Edge Cl	ock without PLL)		1	1	1	1	1	1
		MachXO2-1200ZE	_	11.10		11.51		11.91	ns
	Clock to Output – PIO Output	MachXO2-2000ZE	_	11.10	—	11.51	—	11.91	ns
t _{COE}	Register	MachXO2-4000ZE	_	10.89	_	11.28	_	11.67	ns
		MachXO2-7000ZE		11.10		11.51		11.91	ns
		MachXO2-1200ZE	-0.23		-0.23		-0.23		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	-0.23		-0.23		-0.23		ns
t _{SUE}		MachXO2-4000ZE	-0.15		-0.15		-0.15		ns
		MachXO2-7000ZE	-0.23		-0.23		-0.23		ns
		MachXO2-1200ZE	3.81		4.11		4.52		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	3.81		4.11		4.52		ns
t _{HE}	Register	MachXO2-4000ZE	3.60		3.89		4.28		ns
		MachXO2-7000ZE	3.81		4.11		4.52		ns
		MachXO2-1200ZE	2.78		3.11		3.40		ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	2.78		3.11		3.40		ns
t _{SU_DELE}	Input Register with Data Input	MachXO2-4000ZE	3.11		3.48		3.79		ns
	Delay	MachXO2-7000ZE	2.94		3.30		3.60		ns
		MachXO2-1200ZE	-0.29		-0.29		-0.29		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-0.29		-0.29		-0.29		ns
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000ZE	-0.46	_	-0.46		-0.46		ns
		MachXO2-7000ZE	-0.37		-0.37		-0.37		ns
General I/O	Pin Parameters (Using Primary		0.07		0.07		0.07		
Generalizer		MachXO2-1200ZE	_	7.95	_	8.07	_	8.19	ns
		MachXO2-2000ZE		7.97	_	8.10	_	8.22	ns
t _{COPLL}	Clock to Output – PIO Output Register	MachXO2-4000ZE		7.98		8.10		8.23	ns
	Ĭ	MachXO2-4000ZE		8.02	_	8.14		8.26	ns
		MachXO2-1200ZE	0.85	0.02	0.85	0.14	0.89	0.20	ns
		MachXO2-1200ZE	0.85		0.85		0.89		
t _{SUPLL}	Clock to Data Setup – PIO Input Register	MachXO2-2000ZE	0.84		0.84		0.85		ns
								_	ns
		MachXO2-7000ZE	0.83		0.83		0.81		ns

			-	-3	_	2	_	-1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9,12}									
t _{DVADQ}	Input Data Valid After DQS Input		_	0.349	_	0.381	_	0.396	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.665	—	0.630	_	0.613	—	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	120	_	110	_	96	Mbps
f _{SCLK}	SCLK Frequency		—	60	—	55		48	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	120	0	110	0	96	Mbps
DDR ^{9, 12}		·			•				
t _{DVADQ}	Input Data Valid After DQS Input		_	0.347	_	0.374	_	0.393	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.665	_	0.637	_	0.616	—	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices,	0.25	_	0.25	_	0.25	—	UI
t _{DQVAS}	Output Data Invalid After DQS Output	right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed			140	_	116		98	Mbps
f _{SCLK}	SCLK Frequency		—	70		58	—	49	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps
DDR2 ^{9, 12}		•							
t _{DVADQ}	Input Data Valid After DQS Input		_	0.372	_	0.394	_	0.410	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.690	_	0.658	_	0.618	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	and larger devices, right side only. ¹³	0.25	_	0.25	_	0.25		UI
f _{DATA}	MEM DDR Serial Data Speed	1	—	140	—	116		98	Mbps
f _{SCLK}	SCLK Frequency	1	—	70	—	58		49	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	140	N/A	116	N/A	98	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0 pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 167 ps (-3), 182 ps (-2), 195 ps (-1).

8. This number for general purpose usage. Duty cycle tolerance is +/-10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32-Pin QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

Figure 3-9. GDDR71 Video Timing Waveforms

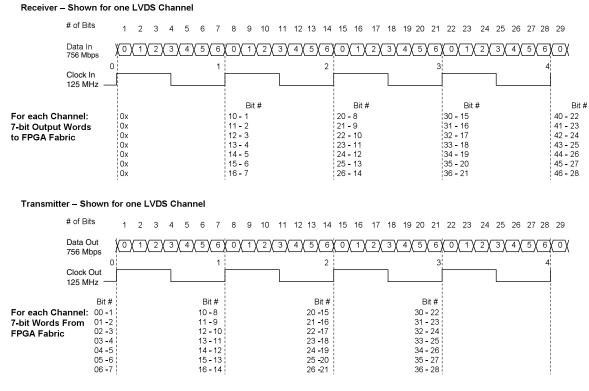


Figure 3-10. Receiver GDDR71_RX. Waveforms

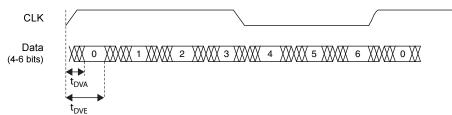
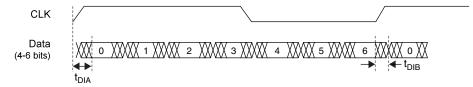




Figure 3-11. Transmitter GDDR71_TX. Waveforms

			MachX	D2-2000			MachXO2-2000U
	49 WLCSP	100 TQFP	132 csBGA	144 TQFP	256 caBGA	256 ftBGA	484 ftBGA
General Purpose I/O per Bank	•		•	•	•		
Bank 0	19	18	25	27	50	50	70
Bank 1	0	21	26	28	52	52	68
Bank 2	13	20	28	28	52	52	72
Bank 3	0	6	7	8	16	16	24
Bank 4	0	6	8	10	16	16	16
Bank 5	6	8	10	10	20	20	28
Total General Purpose Single-Ended I/O	38	79	104	111	206	206	278
Differential I/O per Bank							
Bank 0	7	9	13	14	25	25	35
Bank 1	0	10	13	14	26	26	34
Bank 2	6	10	14	14	26	26	36
Bank 3	0	3	3	4	8	8	12
Bank 4	0	3	4	5	8	8	8
Bank 5	3	4	5	5	10	10	14
Total General Purpose Differential I/O	16	39	52	56	103	103	139
Dual Function I/O	24	31	33	33	33	33	37
High-speed Differential I/O		-					_
Bank 0	5	4	8	9	14	14	18
Gearboxes	-		_	_			-
Number of 7:1 or 8:1 Output Gearbox Available (Bank 0)	5	4	8	9	14	14	18
Number of 7:1 or 8:1 Input Gearbox Available (Bank 2)	6	10	14	14	14	14	18
DQS Groups							
Bank 1	0	1	2	2	2	2	2
VCCIO Pins							
Bank 0	2	2	3	3	4	4	10
Bank 1	0	2	3	3	4	4	10
Bank 2	1	2	3	3	4	4	10
Bank 3	0	1	1	1	1	1	3
Bank 4	0	1	1	1	2	2	4
Bank 5	1	1	1	1	1	1	3
	1		I	1	I		T
VCC	2	2	4	4	8	8	12
GND	4	8	10	12	24	24	48
NC	0	1	1	4	1	1	105
Reserved for Configuration	1	1	1	1	v	1	1
Total Count of Bonded Pins	39	100	132	144	256	256	484

For Further Information

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software

High-Performance Commercial Grade Devices without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100C	2112	1.2 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-5TG100C	2112	1.2 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-6TG100C	2112	1.2 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-2000HE-4TG144C	2112	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-5TG144C	2112	1.2 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-6TG144C	2112	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-2000HE-4MG132C	2112	1.2 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-5MG132C	2112	1.2 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-6MG132C	2112	1.2 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-2000HE-4BG256C	2112	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-5BG256C	2112	1.2 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-6BG256C	2112	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-2000HE-4FTG256C	2112	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-2000HE-5FTG256C	2112	1.2 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-2000HE-6FTG256C	2112	1.2 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484C	2112	1.2 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHE-5FG484C	2112	1.2 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHE-6FG484C	2112	1.2 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HE-4TG144C	4320	1.2 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-5TG144C	4320	1.2 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-6TG144C	4320	1.2 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HE-4MG132C	4320	1.2 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-5MG132C	4320	1.2 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-6MG132C	4320	1.2 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HE-4BG256C	4320	1.2 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-4MG184C	4320	1.2 V	-4	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-5MG184C	4320	1.2 V	-5	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-6MG184C	4320	1.2 V	-6	Halogen-Free csBGA	184	COM
LCMXO2-4000HE-5BG256C	4320	1.2 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-6BG256C	4320	1.2 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HE-4FTG256C	4320	1.2 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-5FTG256C	4320	1.2 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-6FTG256C	4320	1.2 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HE-4BG332C	4320	1.2 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HE-5BG332C	4320	1.2 V	-5	Halogen-Free caBGA	332	COM

High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-256HC-4SG32I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	IND
LCMXO2-256HC-5SG32I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	IND
LCMXO2-256HC-6SG32I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	IND
LCMXO2-256HC-4SG48I	256	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-256HC-5SG48I	256	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-256HC-6SG48I	256	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-256HC-4UMG64I	256	2.5 V / 3.3 V	-4	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-5UMG64I	256	2.5 V / 3.3 V	-5	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-6UMG64I	256	2.5 V / 3.3 V	-6	Halogen-Free ucBGA	64	IND
LCMXO2-256HC-4TG100I	256	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-256HC-5TG100I	256	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-256HC-6TG100I	256	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-256HC-4MG132I	256	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-256HC-5MG132I	256	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-256HC-6MG132I	256	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640HC-4SG48I	640	2.5 V / 3.3 V	-4	Halogen-Free QFN	48	IND
LCMXO2-640HC-5SG48I	640	2.5 V / 3.3 V	-5	Halogen-Free QFN	48	IND
LCMXO2-640HC-6SG48I	640	2.5 V / 3.3 V	-6	Halogen-Free QFN	48	IND
LCMXO2-640HC-4TG100I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-640HC-5TG100I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-640HC-6TG100I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-640HC-4MG132I	640	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-640HC-5MG132I	640	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-640HC-6MG132I	640	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-640UHC-4TG144I	640	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-5TG144I	640	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-640UHC-6TG144I	640	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

MachXO2 Family Data Sheet Revision History

March 2017

Data Sheet DS1035

Date	Version	Section	Change Summary
March 2017	3.3	DC and Switching Characteristics	Updated the Absolute Maximum Ratings section. Added standards.
			Updated the sysIO Recommended Operating Conditions section. Added standards.
			Updated the sysIO Single-Ended DC Electrical Characteristics sec- tion. Added standards.
			Updated the MachXO2 External Switching Characteristics – HC/HE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the MachXO2 External Switching Characteristics – ZE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the sysCONFIG Port Timing Specifications section. Corrected the t_{INITL} units from ns to μ s.
		Pinout Information	Updated the Signal Descriptions section. Revised the descriptions of the PROGRAMN, INITN, and DONE signals.
			Updated the Pinout Information Summary section. Added footnote to MachXO2-1200 32 QFN.
		Ordering Information	Updated the MachXO2 Part Number Description section. Corrected the MG184, BG256, FTG256 package information. Added "(0.8 mm Pitch)" to BG332.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. — Updated LCMXO2-1200ZE-1UWG25ITR50 footnote. — Corrected footnote numbering typo. — Added the LCMXO2-2000ZE-1UWG49ITR50 and LCMXO2- 2000ZE-1UWG49ITR1K part numbers. Updated/added footnote/s.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
December 2014	2.9	Introduction	Updated the Features section. Revised Table 1-1, MachXO2 Family Selection Guide. — Removed XO2-4000U data. — Removed 400-ball ftBGA. — Removed 25-ball WLCSP value for XO2-2000U.
		DC and Switching Characteristics	Updated the Recommended Operating Conditions section. Adjusted Max. values for V_{CC} and V_{CCIO}
			Updated the sysIO Recommended Operating Conditions section. Adjusted Max. values for LVCMOS 3.3, LVTTL, PCI, LVDS33 and LVPECL.
		Pinout Information	Updated the Pinout Information Summary section. Removed MachXO2-4000U.
		Ordering Information	Updated the MachXO2 Part Number Description section. Removed BG400 package.
			Updated the High-Performance Commercial Grade Devices with Volt- age Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
			Updated the High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging section. Removed LCMXO2-4000UHC part numbers.
November 2014	2.8	Introduction	Updated the Features section. — Revised I/Os under Flexible Logic Architecture. — Revised standby power under Ultra Low Power Devices. — Revise input frequency range under Flexible On-Chip Clocking.
			Updated Table 1-1, MachXO2 Family Selection Guide. — Added XO2-4000U data. — Removed HE and ZE device options for XO2-4000. — Added 400-ball ftBGA.
		Pinout Information	Updated the Pinout Information Summary section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400.
		Ordering Information	Updated the MachXO2 Part Number Description section. Added BG400 package.
			Updated the Ordering Information section. Added MachXO2-4000U caBGA400 and MachXO2-7000 caBGA400 part numbers.
October 2014	2.7	Ordering Information	Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. Fixed typo in LCMXO2-2000ZE- 1UWG49ITR part number package.
		Architecture	Updated the Supported Standards section. Added MIPI information to Table 2-12. Supported Input Standards and Table 2-13. Supported Output Standards.
		DC and Switching Characteristics	Updated the BLVDS section. Changed output impedance nominal values in Table 3-2, BLVDS DC Condition.
			Updated the LVPECL section. Changed output impedance nominal value in Table 3-3, LVPECL DC Condition.
			Updated the sysCONFIG Port Timing Specifications section. Updated INITN low time values.
July 2014	2.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics ^{1, 2} section. Updated footnote 4.
			Updated Register-to-Register Performance section. Updated foot- note.
		Ordering Information	Updated UW49 package to UWG49 in MachXO2 Part Number Description.
			Updated LCMXO2-2000ZE-1UWG49CTR package in Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging.