
E · K Hattice Semiconductor Corporation - LCMX02-7000HE-6FG484I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	858
Number of Logic Elements/Cells	6864
Total RAM Bits	245760
Number of I/O	334
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-7000he-6fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

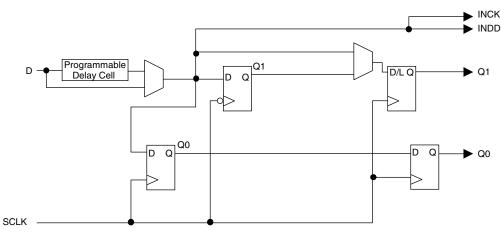
FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

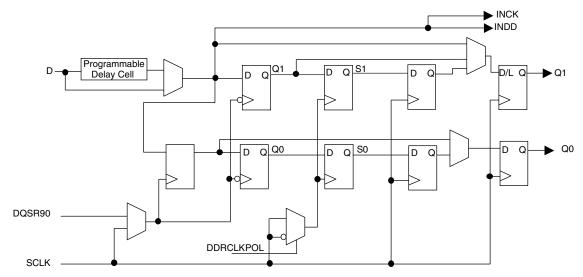
N = Address bit width.


The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

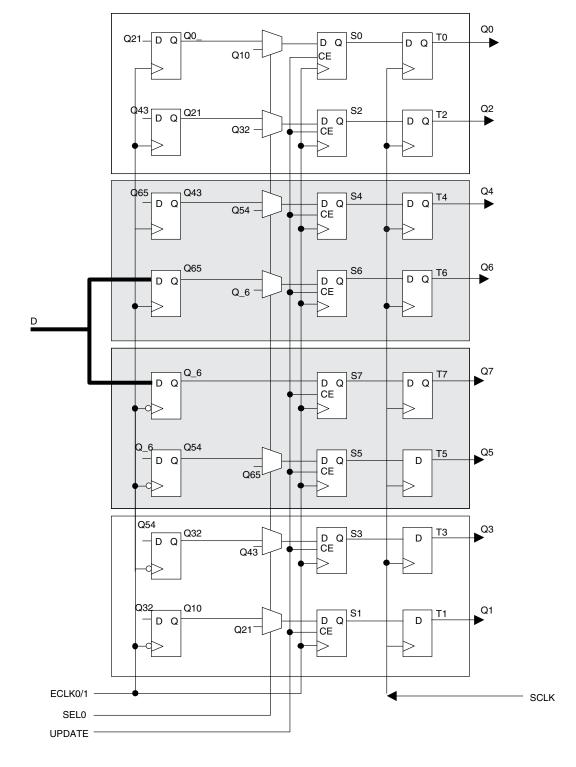
Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.


Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox.

Figure 2-16. Input Gearbox

DDR Memory Support

Certain PICs on the right edge of MachXO2-640U, MachXO2-1200/U and larger devices, have additional circuitry to allow the implementation of DDR memory interfaces. There are two groups of 14 or 12 PIOs each on the right edge with additional circuitry to implement DDR memory interfaces. This capability allows the implementation of up to 16-bit wide memory interfaces. One PIO from each group contains a control element, the DQS Read/Write Block, to facilitate the generation of clock and control signals (DQSR90, DQSW90, DDRCLKPOL and DATAVALID). These clock and control signals are distributed to the other PIO in the group through dedicated low skew routing.

DQS Read Write Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Read Write block provides the required clock alignment for DDR memory interfaces. DQSR90 and DQSW90 signals are generated by the DQS Read Write block from the DQS input.

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. The MachXO2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This circuit changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each read cycle for the correct clock polarity. Prior to the read operation in DDR memories, DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit in the DQS Read Write block detects the first DQS rising edge after the preamble state and generates the DDRCLKPOL signal. This signal is used to control the polarity of the clock to the synchronizing registers.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration signals (6-bit bus) from a DLL on the right edge of the device. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS, TTL, PCI, SSTL, HSTL, LVDS, BLVDS, MLVDS and LVPECL.

Each bank is capable of supporting multiple I/O standards. In the MachXO2 devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) and referenced input buffers (SSTL and HSTL) are powered using I/O supply voltage (V_{CCIO}). Each sysIO bank has its own V_{CCIO} . In addition, each bank has a voltage reference, V_{REF} which allows the use of referenced input buffers independent of the bank V_{CCIO} .

MachXO2-256 and MachXO2-640 devices contain single-ended ratioed input buffers and single-ended output buffers with complementary outputs on all the I/O banks. Note that the single-ended input buffers on these devices do not contain PCI clamps. In addition to the single-ended I/O buffers these two devices also have differential and referenced input buffers on all I/Os. The I/Os are arranged in pairs, the two pads in the pair are described as "T" and "C", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks

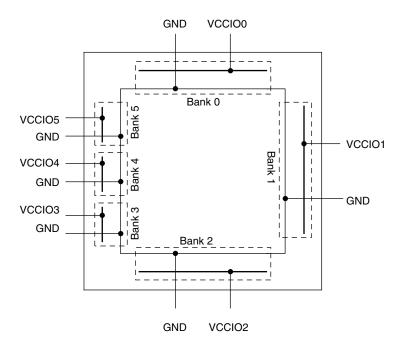
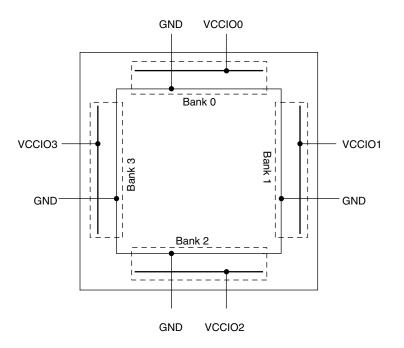
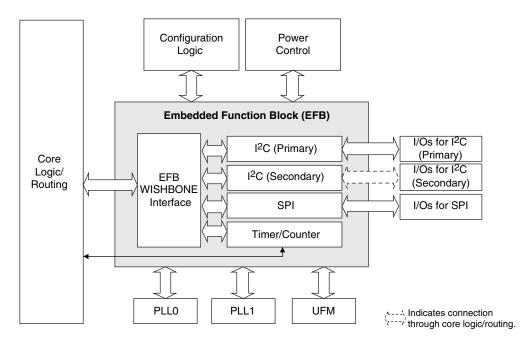




Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks

Figure 2-20. Embedded Function Block Interface

Hardened I²C IP Core

Every MachXO2 device contains two I²C IP cores. These are the primary and secondary I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core.

When the IP core is configured as a master it will be able to control other devices on the I^2C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Up to 400 kHz data transfer speed
- General call support
- Interface to custom logic through 8-bit WISHBONE interface

Figure 2-21. PC Core Block Diagram

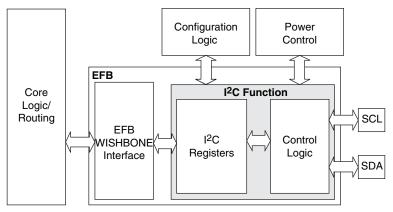


Table 2-15 describes the signals interfacing with the I²C cores.

 Table 2-15.
 PC Core Signal Description

Signal Name	I/O	Description
i2c_scl	Bi-directional	Bi-directional clock line of the I ² C core. The signal is an output if the I ² C core is in master mode. The signal is an input if the I ² C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device.
i2c_sda	Bi-directional	Bi-directional data line of the I ² C core. The signal is an output when data is transmitted from the I ² C core. The signal is an input when data is received into the I ² C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I ² C ports in each MachXO2 device.
i2c_irqo	Output	Interrupt request output signal of the I ² C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I ² C register definitions.
cfg_wake	Output	Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.
cfg_stdby	Output	Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the "Wakeup Enable" feature has been set within the EFB GUI, I^2C Tab.

Hardened SPI IP Core

Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions:

- Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Interface to custom logic through 8-bit WISHBONE interface

Static Supply Current – HC/HE Devices^{1, 2, 3, 6}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO2-256HC	1.15	mA
		LCMXO2-640HC	1.84	mA
		LCMXO2-640UHC	3.48	mA
		LCMXO2-1200HC	3.49	mA
		LCMXO2-1200UHC	4.80	mA
1	Core Power Supply	LCMXO2-2000HC	4.80	mA
ICC		LCMXO2-2000UHC	8.44	mA
		LCMXO2-4000HC	8.45	mA
		LCMXO2-7000HC	12.87	mA
		LCMXO2-2000HE	1.39	mA
		LCMXO2-4000HE	2.55	mA
		LCMXO2-7000HE	4.06	mA
Іссю	Bank Power Supply⁵ V _{CCIO} = 2.5 V	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Does not include pull-up/pull-down.

6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool.

Programming and Erase Flash Supply Current – HC/HE Devices^{1, 2, 3, 4}

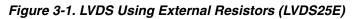
Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256HC	14.6	mA
		LCMXO2-640HC	16.1	mA
		LCMXO2-640UHC	18.8	mA
		LCMXO2-1200HC	18.8	mA
		LCMXO2-1200UHC	22.1	mA
		LCMXO2-2000HC	22.1	mA
I _{CC}	Core Power Supply	LCMXO2-2000UHC	26.8	mA
		LCMXO2-4000HC	26.8	mA
		LCMXO2-7000HC	33.2	mA
		LCMXO2-2000HE	18.3	mA
		LCMXO2-2000UHE	20.4	mA
		LCMXO2-4000HE	20.4	mA
		LCMXO2-7000HE	23.9	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	0	mA

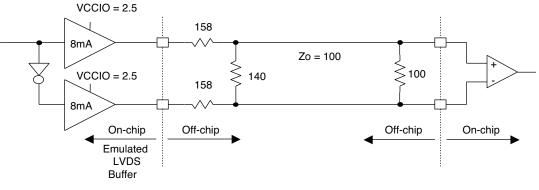
1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.


5. $T_J = 25$ °C, power supplies at nominal voltage.


6. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up/pull-down.

LVDS Emulation

MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Note: All resistors are ±1%.

Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

_									
Parameter	Description	Тур.	Units						
Z _{OUT}	Output impedance	20	Ohms						
R _S	Driver series resistor	158	Ohms						
R _P	Driver parallel resistor	140	Ohms						
R _T	Receiver termination	100	Ohms						
V _{OH}	Output high voltage	1.43	V						
V _{OL}	Output low voltage	1.07	V						
V _{OD}	Output differential voltage	0.35	V						
V _{CM}	Output common mode voltage	1.25	V						
Z _{BACK}	Back impedance	100.5	Ohms						
I _{DC}	DC output current	6.03	mA						

Typical Building Block Function Performance – HC/HE Devices¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-6 Timing	Units
Basic Functions		
16-bit decoder	8.9	ns
4:1 MUX	7.5	ns
16:1 MUX	8.3	ns

Register-to-Register Performance

Function	-6 Timing	Units
Basic Functions		
16:1 MUX	412	MHz
16-bit adder	297	MHz
16-bit counter	324	MHz
64-bit counter	161	MHz
Embedded Memory Functions		
1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers)	183	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (one PFU)	500	MHz

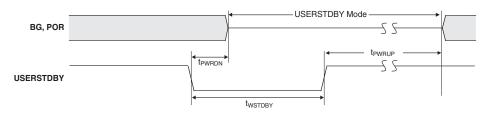
 The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

			_	6	_	-5		4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200HC-HE	0.41		0.48		0.55		ns
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	0.42		0.49		0.56		ns
t _{HPLL}	Register	MachXO2-4000HC-HE	0.43		0.50		0.58		ns
		MachXO2-7000HC-HE	0.46		0.54		0.62		ns
		MachXO2-1200HC-HE	2.88	—	3.19	—	3.72	—	ns
	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-2000HC-HE	2.87	—	3.18	—	3.70	—	ns
SU_DELPLL Input Register with Data Inpu Delay	MachXO2-4000HC-HE	2.96	—	3.28	—	3.81	—	ns	
		MachXO2-7000HC-HE	3.05	—	3.35	—	3.87	—	ns
		MachXO2-1200HC-HE	-0.83	—	-0.83	—	-0.83	—	ns
+	L Clock to Data Hold – PIO Input Register with Input Data Delay	MachXO2-2000HC-HE	-0.83	—	-0.83	—	-0.83	—	ns
^t H_DELPLL		MachXO2-4000HC-HE	-0.87		-0.87	—	-0.87		ns
		MachXO2-7000HC-HE	-0.91		-0.91		-0.91		ns
Generic DDI	Generic DDRX1 Inputs with Clock and Data Aligned at			for Cloc	k Input –	GDDR	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.317		0.344		0.368	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2 devices, all sides	0.742		0.702		0.668		UI
f _{DATA}	DDRX1 Input Data Speed			300		250		208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150	—	125	—	104	MHz
Generic DDF	X1 Inputs with Clock and Data C	Centered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.566		0.560		0.538		ns
t _{HO}	Input Data Hold After CLK	All MachXO2 devices,	0.778	—	0.879		1.090	—	ns
f _{DATA}	DDRX1 Input Data Speed	all sides	_	300	—	250	—	208	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	150		125		104	MHz
Generic DDF	RX2 Inputs with Clock and Data	Aligned at Pin Using PC	LK Pin 1	or Clock	< Input –	GDDRX	2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.316		0.342		0.364	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.710	—	0.675		0.679	—	UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	664	_	554	_	462	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	332	—	277	—	231	MHz
f _{SCLK}	SCLK Frequency			166	—	139	—	116	MHz
Generic DDF	X2 Inputs with Clock and Data C	entered at Pin Using PC	LK Pin f	or Clock	Input –	GDDRX	2_RX.EC	LK.Cent	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.233	—	0.219	—	0.198	—	ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.287		0.287	—	0.344		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,		664	_	554		462	Mbps
4	DDRX2 ECLK Frequency	bottom side only ¹¹		332		277	_	231	MHz
f _{DDRX2}	DDI INZ LOLIN I TEQUEILUS			00Z		211		201	

MachXO2 External Switching Characteristics – ZE Devices^{1, 2, 3, 4, 5, 6, 7}

			-	-3	-	2	-1		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Cloo	cks								
f _{MAX_PRI} ⁸	Frequency for Primary Clock Tree	All MachXO2 devices	_	150	_	125	—	104	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All MachXO2 devices	1.00	_	1.20	_	1.40	_	ns
		MachXO2-256ZE	—	1250		1272	—	1296	ps
		MachXO2-640ZE		1161		1183	—	1206	ps
	Primary Clock Skew Within a	MachXO2-1200ZE		1213		1267	—	1322	ps
^I SKEW_PRI	Device	MachXO2-2000ZE		1204		1250	—	1296	ps
		MachXO2-4000ZE		1195		1233	—	1269	ps
		MachXO2-7000ZE		1243		1268	—	1296	ps
Edge Clock									
f _{MAX_EDGE⁸}	Frequency for Edge Clock	MachXO2-1200 and larger devices	_	210	_	175	_	146	MHz
Pin-LUT-Pin	Propagation Delay			1	1				1
t _{PD}	Best case propagation delay through one LUT-4	All MachXO2 devices	_	9.35	_	9.78	_	10.21	ns
General I/O I	Pin Parameters (Using Primary	Clock without PLL)	1			1		1	
		MachXO2-256ZE		10.46	—	10.86	—	11.25	ns
		MachXO2-640ZE		10.52		10.92	—	11.32	ns
	Clock to Output – PIO Output	MachXO2-1200ZE		11.24		11.68	—	12.12	ns
^t CO	Register	MachXO2-2000ZE		11.27		11.71	—	12.16	ns
		MachXO2-4000ZE		11.28		11.78	—	12.28	ns
fMAX_PRI ⁸ tw_PRI tSKEW_PRI Edge Clock fMAX_EDGE ⁸ Pin-LUT-Pin t _{PD}		MachXO2-7000ZE	—	11.22		11.76	—	12.30	ns
		MachXO2-256ZE	-0.21		-0.21	—	-0.21	—	ns
		MachXO2-640ZE	-0.22	—	-0.22	—	-0.22	—	ns
	Clock to Data Setup – PIO	MachXO2-1200ZE	-0.25	—	-0.25	—	-0.25	—	ns
ISU	Input Register	MachXO2-2000ZE	-0.27	—	-0.27	—	-0.27	—	ns
		MachXO2-4000ZE	-0.31	—	-0.31		-0.31		ns
		MachXO2-7000ZE	-0.33	—	-0.33		-0.33		ns
		MachXO2-256ZE	3.96		4.25	_	4.65	_	ns
		MachXO2-640ZE	4.01		4.31	—	4.71	—	ns
÷	Clock to Data Hold – PIO Input	MachXO2-1200ZE	3.95		4.29	_	4.73	_	ns
Ч	Register	MachXO2-2000ZE	3.94	—	4.29	—	4.74	—	ns
		MachXO2-4000ZE	3.96		4.36	—	4.87	—	ns
		MachXO2-7000ZE	3.93		4.37	—	4.91		ns
		IVIACHAU2-7000ZE	3.93	—	4.37		4.91		

Over Recommended Operating Conditions


MachXO2 Oscillator Output Frequency

Symbol	Parameter	Min.	Тур.	Max	Units
f	Oscillator Output Frequency (Commercial Grade Devices, 0 to 85°C)	125.685	133	140.315	MHz
TMAX	Oscillator Output Frequency (Industrial Grade Devices, –40 °C to 100 °C)	124.355	133	141.645	MHz
t _{DT}	Output Clock Duty Cycle	43	50	57	%
t _{OPJIT} 1	Output Clock Period Jitter	0.01	0.012	0.02	UIPP
t _{STABLEOSC}	STDBY Low to Oscillator Stable	0.01	0.05	0.1	μs

1. Output Clock Period Jitter specified at 133 MHz. The values for lower frequencies will be smaller UIPP. The typical value for 133 MHz is 95 ps and for 2.08 MHz the typical value is 1.54 ns.

MachXO2 Standby Mode Timing – HC/HE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	_	9	ns
		LCMXO2-256		_		μs
		LCMXO2-640		_		μs
		LCMXO2-640U		_		μs
		LCMXO2-1200	20	_	50	μs
t _{PWRUP}	USERSTDBY Low to Power Up	LCMXO2-1200U				μs
		LCMXO2-2000		_		μs
		LCMXO2-2000U		_		μs
		LCMXO2-4000		_		μs
		LCMXO2-7000		_		μs
t _{WSTDBY}	USERSTDBY Pulse Width	All	18		—	ns



MachXO2 Standby Mode Timing – ZE Devices

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	USERSTDBY High to Stop	All	_	—	13	ns
		LCMXO2-256		—		μs
		LCMXO2-640		—		μs
+	USERSTDBY Low to Power Up	LCMXO2-1200	20	—	50	μs
^t PWRUP		LCMXO2-2000		—		μs
		LCMXO2-4000		—		μs
		LCMXO2-7000		· · · ·	μs	
t _{WSTDBY}	USERSTDBY Pulse Width	All	19			ns
t _{BNDGAPSTBL}	USERSTDBY High to Bandgap Stable	All		—	15	ns

For Further Information

For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1198, Power Estimation and Management for MachXO2 Devices
- The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/software

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1TG100C	2112	1.2 V	-1	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-2TG100C	2112	1.2 V	-2	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-3TG100C	2112	1.2 V	-3	Halogen-Free TQFP	100	COM
LCMXO2-2000ZE-1MG132C	2112	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-2MG132C	2112	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-3MG132C	2112	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-2000ZE-1TG144C	2112	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-2TG144C	2112	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-3TG144C	2112	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-2000ZE-1BG256C	2112	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-2BG256C	2112	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-3BG256C	2112	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-2000ZE-1FTG256C	2112	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-2FTG256C	2112	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-2000ZE-3FTG256C	2112	1.2 V	-3	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84C	4320	1.2 V	-1	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-2QN84C	4320	1.2 V	-2	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-3QN84C	4320	1.2 V	-3	Halogen-Free QFN	84	COM
LCMXO2-4000ZE-1MG132C	4320	1.2 V	-1	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-2MG132C	4320	1.2 V	-2	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-3MG132C	4320	1.2 V	-3	Halogen-Free csBGA	132	COM
LCMXO2-4000ZE-1TG144C	4320	1.2 V	-1	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-2TG144C	4320	1.2 V	-2	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-3TG144C	4320	1.2 V	-3	Halogen-Free TQFP	144	COM
LCMXO2-4000ZE-1BG256C	4320	1.2 V	-1	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-2BG256C	4320	1.2 V	-2	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-3BG256C	4320	1.2 V	-3	Halogen-Free caBGA	256	COM
LCMXO2-4000ZE-1FTG256C	4320	1.2 V	-1	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-2FTG256C	4320	1.2 V	-2	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-3FTG256C	4320	1.2 V	-3	Halogen-Free ftBGA	256	COM
LCMXO2-4000ZE-1BG332C	4320	1.2 V	-1	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-2BG332C	4320	1.2 V	-2	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-3BG332C	4320	1.2 V	-3	Halogen-Free caBGA	332	COM
LCMXO2-4000ZE-1FG484C	4320	1.2 V	-1	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-2FG484C	4320	1.2 V	-2	Halogen-Free fpBGA	484	COM
LCMXO2-4000ZE-3FG484C	4320	1.2 V	-3	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4SG32C	1280	2.5 V / 3.3 V	-4	Halogen-Free QFN	32	COM
LCMXO2-1200HC-5SG32C	1280	2.5 V / 3.3 V	-5	Halogen-Free QFN	32	COM
LCMXO2-1200HC-6SG32C	1280	2.5 V / 3.3 V	-6	Halogen-Free QFN	32	COM
LCMXO2-1200HC-4TG100C	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-5TG100C	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-6TG100C	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-1200HC-4MG132C	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-5MG132C	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-6MG132C	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-1200HC-4TG144C	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-5TG144C	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-1200HC-6TG144C	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200UHC-4FTG256C	1280	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-1200UHC-5FTG256C	1280	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-1200UHC-6FTG256C	1280	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HC-4TG100C	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-5TG100C	2112	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-6TG100C	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	COM
LCMXO2-2000HC-4MG132C	2112	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-5MG132C	2112	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-6MG132C	2112	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-2000HC-4TG144C	2112	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-5TG144C	2112	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-6TG144C	2112	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-2000HC-4BG256C	2112	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-5BG256C	2112	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-6BG256C	2112	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-2000HC-4FTG256C	2112	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-2000HC-5FTG256C	2112	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-2000HC-6FTG256C	2112	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000ZE-1UWG49ITR1	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR50 ³	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1UWG49ITR1K ²	2112	1.2 V	-1	Halogen-Free WLCSP	49	IND
LCMXO2-2000ZE-1TG100I	2112	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-2TG100I	2112	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-3TG100I	2112	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-2000ZE-1MG132I	2112	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-2MG132I	2112	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-3MG132I	2112	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-2000ZE-1TG144I	2112	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-2TG144I	2112	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-3TG144I	2112	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-2000ZE-1BG256I	2112	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-2BG256I	2112	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-3BG256I	2112	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-2000ZE-1FTG256I	2112	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-2FTG256I	2112	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-2000ZE-3FTG256I	2112	1.2 V	-3	Halogen-Free ftBGA	256	IND

1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 5,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled.

2. This part number has a tape and reel quantity of 1,000 units with a minimum order quantity of 1,000. Order quantities must be in increments of 1,000 units. For example, a 5,000 unit order will be shipped as 5 reels of 1000 units each.

3. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1,000 unit order will be shipped as 20 reels of 50 units each.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200ZE-1TG100IR11	1280	1.2 V	-1	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-2TG100IR11	1280	1.2 V	-2	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-3TG100IR11	1280	1.2 V	-3	Halogen-Free TQFP	100	IND
LCMXO2-1200ZE-1MG132IR11	1280	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-2MG132IR11	1280	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-3MG132IR11	1280	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-1200ZE-1TG144IR11	1280	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-2TG144IR11	1280	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-1200ZE-3TG144IR11	1280	1.2 V	-3	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200ZE-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000HE-4TG100I	2112	1.2 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-5TG100I	2112	1.2 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-6TG100I	2112	1.2 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-2000HE-4MG132I	2112	1.2 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-5MG132I	2112	1.2 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-6MG132I	2112	1.2 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-2000HE-4TG144I	2112	1.2 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-5TG144I	2112	1.2 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-6TG144I	2112	1.2 V	-6	Halogen-Free TQFP	144	IND
LCMXO2-2000HE-4BG256I	2112	1.2 V	-4	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-5BG256I	2112	1.2 V	-5	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-6BG256I	2112	1.2 V	-6	Halogen-Free caBGA	256	IND
LCMXO2-2000HE-4FTG256I	2112	1.2 V	-4	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-5FTG256I	2112	1.2 V	-5	Halogen-Free ftBGA	256	IND
LCMXO2-2000HE-6FTG256I	2112	1.2 V	-6	Halogen-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHE-4FG484I	2112	1.2 V	-4	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-5FG484I	2112	1.2 V	-5	Halogen-Free fpBGA	484	IND
LCMXO2-2000UHE-6FG484I	2112	1.2 V	-6	Halogen-Free fpBGA	484	IND