E · / Eartice Semiconductor Corporation - <u>LCMX02-7000ZE-3BG332C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	858
Number of Logic Elements/Cells	6864
Total RAM Bits	245760
Number of I/O	278
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	332-FBGA
Supplier Device Package	332-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2-7000ze-3bg332c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I²C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications.

The MachXO2 devices are designed on a 65 nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family.

The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades –1, –2 and –3, with –3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: –4, –5 and –6, with –6 being the fastest. HC devices have an internal linear voltage regulator which supports external V_{CC} supply voltages of 3.3 V or 2.5 V. ZE and HE devices only accept 1.2 V as the external V_{CC} supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other.

The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5 mm x 2.5 mm WLCSP to the 23 mm x 23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os.

The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis.

A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines.

The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I²C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE[™] modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. Read-Before-Write When new data is being written, the old contents of the address appears at the output.

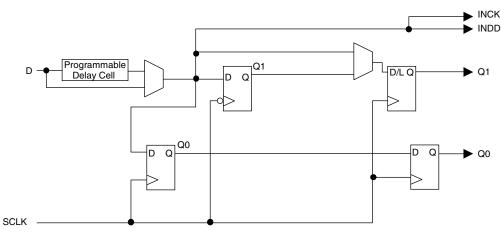
FIFO Configuration

The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to max (up to 2^{N} -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

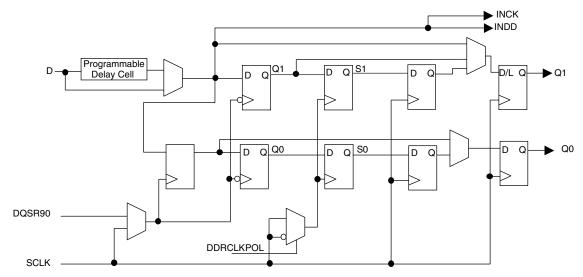
N = Address bit width.


The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9.

Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges)


Right Edge

The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode.

In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block.

Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge)

More information on the input gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices.

Output Gearbox

Each PIC on the top edge has a built-in 8:1 output gearbox. Each of these output gearboxes may be programmed as a 7:1 serializer or as one ODDRX4 (8:1) gearbox or as two ODDRX2 (4:1) gearboxes. Table 2-10 shows the gearbox signals.

Table 2-10. Output Gearbox Signal List

Name	I/O Type	Description
Q	Output	High-speed data output
D[7:0]	Input	Low-speed data from device core
Video TX(7:1): D[6:0]		
GDDRX4(8:1): D[7:0]		
GDDRX2(4:1)(IOL-A): D[3:0]		
GDDRX2(4:1)(IOL-C): D[7:4]		
SCLK	Input	Slow-speed system clock
ECLK [1:0]	Input	High-speed edge clock
RST	Input	Reset

The gearboxes have three stage pipeline registers. The first stage registers sample the low-speed input data on the low-speed system clock. The second stage registers transfer data from the low-speed clock registers to the high-speed clock registers. The third stage pipeline registers controlled by high-speed edge clock shift and mux the high-speed data out to the sysIO buffer. Figure 2-17 shows the output gearbox block diagram.

When implementing background programming of the on-chip Flash, care must be taken for the operation of the PLL. For devices that have two PLLs (XO2-2000U, -4000 and -7000), the system must put the RPLL (Right-side PLL) in reset state during the background Flash programming. More detailed description can be found in TN1204, MachXO2 Programming and Configuration Usage Guide.

Security and One-Time Programmable Mode (OTP)

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO2 devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile Flash memory spaces. The device can be in one of two modes:

- 1. Unlocked Readback of the SRAM configuration and non-volatile Flash memory spaces is allowed.
- 2. Permanently Locked The device is permanently locked.

Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash and SRAM OTP portions of the device. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Dual Boot

MachXO2 devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the on-chip Flash. The golden image MUST reside in an external SPI Flash. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide.

Soft Error Detection

The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1206, MachXO2 Soft Error Detection Usage Guide.

TraceID

Each MachXO2 device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I²C, or JTAG interfaces.

Density Shifting

The MachXO2 family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. When migrating from lower to higher density or higher to lower density, ensure to review all the power supplies and NC pins of the chosen devices. For more details refer to the MachXO2 migration files.

MachXO2 Family Data Sheet DC and Switching Characteristics

March 2017

Data Sheet DS1035

Absolute Maximum Ratings^{1, 2, 3}

	MachXO2 ZE/HE (1.2 V)	MachXO2 HC (2.5 V / 3.3 V)
Supply Voltage V _{CC}	–0.5 V to 1.32 V	–0.5 V to 3.75 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
I/O Tri-state Voltage Applied ^{4, 5}	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Dedicated Input Voltage Applied ⁴	–0.5 V to 3.75 V	–0.5 V to 3.75 V
Storage Temperature (Ambient)	–55 °C to 125 °C	–55 °C to 125 °C
Junction Temperature (T _J)	–40 °C to 125 °C	–40 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

5. The dual function I^2C pins SCL and SDA are limited to -0.25 V to 3.75 V or to -0.3 V with a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter		Max.	Units
V_{-} - 1	Core Supply Voltage for 1.2 V Devices	1.14	1.26	V
V _{CC} ¹	Core Supply Voltage for 2.5 V / 3.3 V Devices	2.375	3.6	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	1.14	3.6	V
t _{JCOM}	Junction Temperature Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

Power Supply Ramp Rates¹

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.01		100	V/ms

1. Assumes monotonic ramp rates.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power-On-Reset Voltage Levels^{1, 2, 3, 4, 5}

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{PORUP}	Power-On-Reset ramp up trip point (band gap based circuit monitoring V_{CCINT} and V_{CCIO0})		_	1.06	V
V _{PORUPEXT}	Power-On-Reset ramp up trip point (band gap based circuit monitoring external V_{CC} power supply)	er-On-Reset ramp up trip point (band gap based circuit		2.1	V
V _{PORDNBG}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $V_{CCINT})$	0.75	_	0.93	V
V _{PORDNBGEXT}	Power-On-Reset ramp down trip point (band gap based circuit monitoring $\rm V_{\rm CC})$		_	1.33	V
V _{PORDNSRAM}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V _{CCINT})		0.6		V
V _{PORDNSRAMEXT}	Power-On-Reset ramp down trip point (SRAM based circuit monitoring V_{CC})	—	0.96	—	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. For devices without voltage regulators V_{CCINT} is the same as the V_{CC} supply voltage. For devices with voltage regulators, V_{CCINT} is regulated from the V_{CC} supply voltage.

3. Note that V_{PORUP} (min.) and V_{PORDNBG} (max.) are in different process corners. For any given process corner V_{PORDNBG} (max.) is always 12.0 mV below V_{PORUP} (min.).

4. V_{PORUPEXT} is for HC devices only. In these devices a separate POR circuit monitors the external V_{CC} power supply.

5. V_{CCIO0} does not have a Power-On-Reset ramp down trip point. V_{CCIO0} must remain within the Recommended Operating Conditions to ensure proper operation.

Programming/Erase Specifications

Symbol Parameter		Min.	Max. ¹	Units	
Nanagaya	Flash Programming cycles per t _{RETENTION}	—	— 10,000		
NPROGCYC	Flash functional programming cycles	—	100,000	Cycles	
	Data retention at 100 °C junction temperature	10	—	Years	
^I RETENTION	Data retention at 85 °C junction temperature	20	_	Teals	

1. Maximum Flash memory reads are limited to 7.5E13 cycles over the lifetime of the product.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Max.	Units
I _{DK}	Input or I/O leakage Current	$0 < V_{IN} < V_{IH}$ (MAX)	+/-1000	μΑ

1. Insensitive to sequence of V_{CC} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCIO} .

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCIO} < V_{CCIO}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

ESD Performance

Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)	_	_	+175	μΑ
		Clamp OFF and $V_{IN} = V_{CCIO}$	-10		10	μA
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Leakage	Clamp OFF and V _{CCIO} –0.97 V < V _{IN} < V _{CCIO}	-175	_	—	μA
		Clamp OFF and 0 V < V _{IN} < V _{CCIO} –0.97 V			10	μA
		Clamp OFF and V _{IN} = GND	—	_	10	μΑ
		Clamp ON and 0 V < V_{IN} < V_{CCIO}	_	_	10	μΑ
I _{PU}	I/O Active Pull-up Current	0 < V _{IN} < 0.7 V _{CCIO}	-30		-309	μA
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) < V_{IN} < V_{CCIO}	30		305	μA
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30		_	μA
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	_	μA
I _{BHLO}	Bus Hold Low Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_	_	305	μA
I _{BHHO}	Bus Hold High Overdrive current	$0 \leq V_{IN} \leq V_{CCIO}$	_	_	-309	μA
V _{BHT} ³	Bus Hold Trip Points		V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5	9	pF
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	3	5.5	7	pF
		V _{CCIO} = 3.3 V, Hysteresis = Large	_	450	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Large	_	250	—	mV
		V _{CCIO} = 1.8 V, Hysteresis = Large	_	125	—	mV
	Hysteresis for Schmitt	V _{CCIO} = 1.5 V, Hysteresis = Large	_	100	—	mV
V _{HYST}	Trigger Inputs ⁵	V _{CCIO} = 3.3 V, Hysteresis = Small	—	250	—	mV
		V _{CCIO} = 2.5 V, Hysteresis = Small	—	150	—	mV
		V _{CCIO} = 1.8 V, Hysteresis = Small	—	60	—	mV
		V _{CCIO} = 1.5 V, Hysteresis = Small	_	40	—	mV

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30 ns in duration or less with a peak current of 6 mA can occur on the high-to-low transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, V_{IH} must be less than or equal to V_{CCIO}.

5. With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.

Programming and Erase Flash Supply Current – ZE Devices^{1, 2, 3, 4}

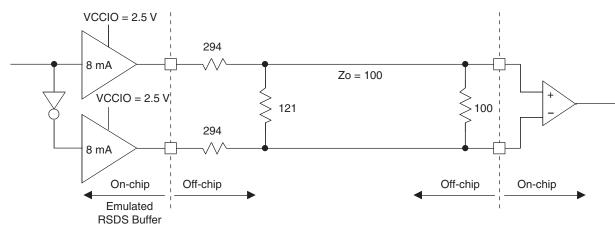
Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO2-256ZE	13	mA
		LCMXO2-640ZE	14	mA
I _{CC}	Core Power Supply	LCMXO2-1200ZE	15	mA
	Core Fower Supply	LCMXO2-2000ZE	17	mA
		LCMXO2-4000ZE	18	mA
		LCMXO2-7000ZE	20	mA
ICCIO	Bank Power Supply ⁶	All devices	0	mA

1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices.

2. Assumes all inputs are held at $V_{\mbox{CCIO}}$ or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.


5. TJ = 25 °C, power supplies at nominal voltage.

6. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up/pull-down.

RSDS

The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

Maximum sysIO Buffer Performance

I/O Standard	Max. Speed	Units
LVDS25	400	MHz
LVDS25E	150	MHz
RSDS25	150	MHz
RSDS25E	150	MHz
BLVDS25	150	MHz
BLVDS25E	150	MHz
MLVDS25	150	MHz
MLVDS25E	150	MHz
LVPECL33	150	MHz
LVPECL33E	150	MHz
SSTL25_I	150	MHz
SSTL25_II	150	MHz
SSTL25D_I	150	MHz
SSTL25D_II	150	MHz
SSTL18_I	150	MHz
SSTL18_II	150	MHz
SSTL18D_I	150	MHz
SSTL18D_II	150	MHz
HSTL18_I	150	MHz
HSTL18_II	150	MHz
HSTL18D_I	150	MHz
HSTL18D_II	150	MHz
PCI33	134	MHz
LVTTL33	150	MHz
LVTTL33D	150	MHz
LVCMOS33	150	MHz
LVCMOS33D	150	MHz
LVCMOS25	150	MHz
LVCMOS25D	150	MHz
LVCMOS25R33	150	MHz
LVCMOS18	150	MHz
LVCMOS18D	150	MHz
LVCMOS18R33	150	MHz
LVCMOS18R25	150	MHz
LVCMOS15	150	MHz
LVCMOS15D	150	MHz
LVCMOS15R33	150	MHz
LVCMOS15R25	150	MHz
LVCMOS12	91	MHz
LVCMOS12D	91	MHz

			-	6	-	5	-	-4		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
		MachXO2-256HC-HE	1.42	—	1.59	—	1.96	—	ns	
		MachXO2-640HC-HE	1.41	—	1.58	—	1.96	—	ns	
•	Clock to Data Setup – PIO Input Register with Data Input	MachXO2-1200HC-HE	1.63		1.79		2.17		ns	
^t SU_DEL	Delay	MachXO2-2000HC-HE	1.61		1.76		2.13		ns	
		MachXO2-4000HC-HE	1.66	—	1.81	—	2.19	—	ns	
		MachXO2-7000HC-HE	1.53	—	1.67	—	2.03	—	ns	
		MachXO2-256HC-HE	-0.24	—	-0.24	—	-0.24	—	ns	
		MachXO2-640HC-HE	-0.23	—	-0.23	—	-0.23	—	ns	
	Clock to Data Hold – PIO Input	MachXO2-1200HC-HE	-0.24	—	-0.24	—	-0.24	—	ns	
t _{H_DEL}	Register with Input Data Delay	MachXO2-2000HC-HE	-0.23	—	-0.23	—	-0.23	—	ns	
		MachXO2-4000HC-HE	-0.25	—	-0.25	—	-0.25	—	ns	
		MachXO2-7000HC-HE	-0.21	_	-0.21		-0.21	—	ns	
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All MachXO2 devices	_	388	_	323	_	269	MHz	
General I/O	Pin Parameters (Using Edge C	lock without PLL)		l		l				
		MachXO2-1200HC-HE	_	7.53	—	7.76		8.10	ns	
	Clock to Output – PIO Output	MachXO2-2000HC-HE		7.53	—	7.76		8.10	ns	
t _{COE} Register		MachXO2-4000HC-HE		7.45	—	7.68		8.00	ns	
		MachXO2-7000HC-HE	_	7.53	—	7.76		8.10	ns	
		MachXO2-1200HC-HE	-0.19		-0.19	—	-0.19		ns	
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	-0.19		-0.19		-0.19		ns	
t _{SUE}	Input Register	MachXO2-4000HC-HE	-0.16		-0.16		-0.16		ns	
		MachXO2-7000HC-HE	-0.19		-0.19		-0.19		ns	
		MachXO2-1200HC-HE	1.97	_	2.24		2.52		ns	
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	1.97	_	2.24		2.52		ns	
t _{HE}	Register	MachXO2-4000HC-HE	1.89		2.16	—	2.43		ns	
		MachXO2-7000HC-HE	1.97		2.24	—	2.52		ns	
		MachXO2-1200HC-HE	1.56		1.69	—	2.05		ns	
	Clock to Data Setup - PIO	MachXO2-2000HC-HE	1.56		1.69	—	2.05		ns	
t _{SU_DELE}	Input Register with Data Input Delay	MachXO2-4000HC-HE	1.74		1.88		2.25		ns	
	Delay	MachXO2-7000HC-HE	1.66		1.81		2.17		ns	
		MachXO2-1200HC-HE	-0.23		-0.23	—	-0.23		ns	
	Clock to Data Hold – PIO Input	MachXO2-2000HC-HE	-0.23		-0.23		-0.23		ns	
t _{H_DELE}	Register with Input Data Delay	MachXO2-4000HC-HE	-0.34		-0.34		-0.34		ns	
		MachXO2-7000HC-HE	-0.29		-0.29		-0.29		ns	
General I/O	Pin Parameters (Using Primar									
		MachXO2-1200HC-HE	_	5.97	_	6.00	_	6.13	ns	
	Clock to Output – PIO Output	MachXO2-2000HC-HE	_	5.98	_	6.01	_	6.14	ns	
	Register	MachXO2-4000HC-HE	_	5.99	_	6.02	_	6.16	ns	
		MachXO2-7000HC-HE	_	6.02	_	6.06	_	6.20	ns	
		MachXO2-1200HC-HE	0.36	_	0.36	_	0.65	_	ns	
	Clock to Data Setup – PIO	MachXO2-2000HC-HE	0.36		0.36		0.63		ns	
t _{SUPLL}	Input Register	MachXO2-4000HC-HE	0.35		0.35		0.62		ns	
	_	MachXO2-7000HC-HE	0.34	_	0.34		0.59		ns	
			0.01	l	0.01	l	0.00			

			_	-6	_	-5	_	4	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
LPDDR ^{9, 12}			l		L	l		L	<u> </u>
t _{DVADQ}	Input Data Valid After DQS Input		_	0.369	_	0.395	_	0.421	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.529	_	0.530	_	0.527	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM LPDDR Serial Data Speed		_	280	_	250	—	208	Mbps
f _{SCLK}	SCLK Frequency			140	—	125		104	MHz
f _{LPDDR}	LPDDR Data Transfer Rate		0	280	0	250	0	208	Mbps
DDR ^{9, 12}			•						
t _{DVADQ}	Input Data Valid After DQS Input		_	0.350	_	0.387	_	0.414	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.545	_	0.538	_	0.532	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and larger devices, right	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed		—	300	—	250	—	208	Mbps
f _{SCLK}	SCLK Frequency		—	150	—	125	—	104	MHz
f _{MEM_DDR}	MEM DDR Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps
DDR2 ^{9, 12}									
t _{DVADQ}	Input Data Valid After DQS Input		_	0.360	_	0.378	_	0.406	UI
t _{DVEDQ}	Input Data Hold After DQS Input		0.555	_	0.549	_	0.542	_	UI
t _{DQVBS}	Output Data Invalid Before DQS Output	MachXO2-1200/U and	0.25	_	0.25	_	0.25	_	UI
t _{DQVAS}	Output Data Invalid After DQS Output	larger devices, right side only. ¹³	0.25	_	0.25	_	0.25	_	UI
f _{DATA}	MEM DDR Serial Data Speed	1		300		250		208	Mbps
f _{SCLK}	SCLK Frequency	1		150	_	125		104	MHz
f _{MEM_DDR2}	MEM DDR2 Data Transfer Rate		N/A	300	N/A	250	N/A	208	Mbps

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the Diamond software.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load, fast slew rate.

3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports).

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18.

5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports).

6. For Generic DDRX1 mode $t_{SU} = t_{HO} = (t_{DVE} - t_{DVA} - 0.03 \text{ ns})/2$.

7. The $t_{SU_{DEL}}$ and $t_{H_{DEL}}$ values use the SCLK_ZERHOLD default step size. Each step is 105 ps (-6), 113 ps (-5), 120 ps (-4).

8. This number for general purpose usage. Duty cycle tolerance is +/- 10%.

9. Duty cycle is +/-5% for system usage.

10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected.

11. High-speed DDR and LVDS not supported in SG32 (32 QFN) packages.

12. Advance information for MachXO2 devices in 48 QFN packages.

13. DDR memory interface not supported in QN84 (84 QFN) and SG32 (32 QFN) packages.

			-	-3	-	-2	- 1	1	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		MachXO2-1200ZE	0.66		0.68		0.80		ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	0.68	—	0.70	—	0.83	—	ns
t _{HPLL}	Register	MachXO2-4000ZE	0.68	—	0.71	—	0.84	—	ns
		MachXO2-7000ZE	0.73	—	0.74	—	0.87	—	ns
-		MachXO2-1200ZE	5.14	—	5.69	—	6.20	—	ns
	Clock to Data Setup – PIO	MachXO2-2000ZE	5.11	—	5.67	—	6.17	—	ns
^t SU_DELPLL	Input Register with Data Input Delay	MachXO2-4000ZE	5.27	—	5.84	—	6.35	—	ns
		MachXO2-7000ZE	5.15	—	5.71	—	6.23	—	ns
-		MachXO2-1200ZE	-1.36	—	-1.36	—	-1.36	—	ns
	Clock to Data Hold – PIO Input	MachXO2-2000ZE	-1.35		-1.35		-1.35		ns
^t H_DELPLL		MachXO2-4000ZE	-1.43		-1.43		-1.43		ns
		MachXO2-7000ZE	-1.41		-1.41		-1.41		ns
Generic DDR	X1 Inputs with Clock and Data A	ligned at Pin Using P	CLK Pin	for Cloc	k Input -	- GDDR)	(1_RX.S	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.382		0.401	—	0.417	UI
t _{DVE}	Input Data Hold After CLK	All MachXO2	0.670	—	0.684		0.693	—	UI
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X1 Inputs with Clock and Data Ce	entered at Pin Using PO	LK Pin f	for Clock	Input –	GDDRX	1_RX.SC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		1.319		1.412		1.462		ns
t _{HO}	Input Data Hold After CLK	All MachXO2	0.717	_	1.010		1.340		ns
f _{DATA}	DDRX1 Input Data Speed	devices, all sides	_	140		116	—	98	Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_	70		58	—	49	MHz
	X2 Inputs with Clock and Data A	ligned at Pin Using P	LK Pin	for Cloc	k Input -	GDDR	2_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After CLK		—	0.361		0.346	—	0.334	UI
t _{DVE}	Input Data Hold After CLK	MachXO2-640U,	0.602		0.625		0.648		UI
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-1200/U and larger devices,	_	280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹	_	140		117	—	97	MHz
f _{SCLK}	SCLK Frequency		_	70		59	—	49	MHz
	X2 Inputs with Clock and Data Ce	entered at Pin Using P	LK Pin f	for Clock	Input –	GDDRX	2_RX.EC	LK.Cen	tered ^{9, 12}
t _{SU}	Input Data Setup Before CLK		0.472		0.672		0.865		ns
t _{HO}	Input Data Hold After CLK	MachXO2-640U,	0.363	_	0.501		0.743		ns
f _{DATA}	DDRX2 Serial Input Data Speed	MachXO2-0400, MachXO2-1200/U and larger devices,		280	_	234	_	194	Mbps
f _{DDRX2}	DDRX2 ECLK Frequency	bottom side only ¹¹		140		117	_	97	MHz
f _{SCLK}	SCLK Frequency			70		59	_	49	MHz
	4 Inputs with Clock and Data A	ligned at Pin Using PC	LK Pin	for Cloc	k Input -	GDDRX	4_RX.E	CLK.Ali	gned ^{9, 12}
t _{DVA}	Input Data Valid After ECLK		_	0.307		0.316	_	0.326	UI
t _{DVE}	Input Data Hold After ECLK	MachXO2-640U,	0.662		0.650		0.649	_	UI
f _{DATA}	DDRX4 Serial Input Data Speed	MachXO2-1200/U and larger devices,	—	420	_	352	_	292	Mbps
f _{DDRX4}	DDRX4 ECLK Frequency	bottom side only ¹¹	—	210		176	_	146	MHz
f _{SCLK}	SCLK Frequency		<u> </u>	53	_	44	—	37	MHz
JULIN		I	1				I		

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, or when reserved as INITn in user mode, this pin has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress. During configuration, or when reserved as DONE in user mode, this pin has an active pull-up.
MCLK/CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SN	I	Slave SPI active low chip select input.
CSSPIN	I/O	Master SPI active low chip select output.
SI/SPISI	I/O	Slave SPI serial data input and master SPI serial data output.
SO/SPISO	I/O	Slave SPI serial data output and master SPI serial data input.
SCL	I/O	Slave I ² C clock input and master I ² C clock output.
SDA	I/O	Slave I ² C data input and master I ² C data output.

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-2000UHC-4FG484C	2112	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-5FG484C	2112	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-2000UHC-6FG484C	2112	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000HC-4QN84C	4320	2.5 V / 3.3 V	-4	Halogen-Free QFN	84	COM
LCMXO2-4000HC-5QN84C	4320	2.5 V / 3.3 V	-5	Halogen-Free QFN	84	COM
LCMXO2-4000HC-6QN84C	4320	2.5 V / 3.3 V	-6	Halogen-Free QFN	84	COM
LCMXO2-4000HC-4MG132C	4320	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-5MG132C	4320	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-6MG132C	4320	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	COM
LCMXO2-4000HC-4TG144C	4320	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-5TG144C	4320	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-6TG144C	4320	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	COM
LCMXO2-4000HC-4BG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-5BG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-6BG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	256	COM
LCMXO2-4000HC-4FTG256C	4320	2.5 V / 3.3 V	-4	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-5FTG256C	4320	2.5 V / 3.3 V	-5	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-6FTG256C	4320	2.5 V / 3.3 V	-6	Halogen-Free ftBGA	256	COM
LCMXO2-4000HC-4BG332C	4320	2.5 V / 3.3 V	-4	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-5BG332C	4320	2.5 V / 3.3 V	-5	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-6BG332C	4320	2.5 V / 3.3 V	-6	Halogen-Free caBGA	332	COM
LCMXO2-4000HC-4FG484C	4320	2.5 V / 3.3 V	-4	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-5FG484C	4320	2.5 V / 3.3 V	-5	Halogen-Free fpBGA	484	COM
LCMXO2-4000HC-6FG484C	4320	2.5 V / 3.3 V	-6	Halogen-Free fpBGA	484	COM

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-4000ZE-1QN84I	4320	1.2 V	-1	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-2QN84I	4320	1.2 V	-2	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-3QN84I	4320	1.2 V	-3	Halogen-Free QFN	84	IND
LCMXO2-4000ZE-1MG132I	4320	1.2 V	-1	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-2MG132I	4320	1.2 V	-2	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-3MG132I	4320	1.2 V	-3	Halogen-Free csBGA	132	IND
LCMXO2-4000ZE-1TG144I	4320	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-2TG144I	4320	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-3TG144I	4320	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-4000ZE-1BG256I	4320	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-2BG256I	4320	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-3BG256I	4320	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-4000ZE-1FTG256I	4320	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-2FTG256I	4320	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-3FTG256I	4320	1.2 V	-3	Halogen-Free ftBGA	256	IND
LCMXO2-4000ZE-1BG332I	4320	1.2 V	-1	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-2BG332I	4320	1.2 V	-2	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-3BG332I	4320	1.2 V	-3	Halogen-Free caBGA	332	IND
LCMXO2-4000ZE-1FG484I	4320	1.2 V	-1	Halogen-Free fpBGA	484	IND
LCMXO2-4000ZE-2FG484I	4320	1.2 V	-2	Halogen-Free fpBGA	484	IND
LCMXO2-4000ZE-3FG484I	4320	1.2 V	-3	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-7000ZE-1TG144I	6864	1.2 V	-1	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-2TG144I	6864	1.2 V	-2	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-3TG144I	6864	1.2 V	-3	Halogen-Free TQFP	144	IND
LCMXO2-7000ZE-1BG256I	6864	1.2 V	-1	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-2BG256I	6864	1.2 V	-2	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-3BG256I	6864	1.2 V	-3	Halogen-Free caBGA	256	IND
LCMXO2-7000ZE-1FTG256I	6864	1.2 V	-1	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-2FTG256I	6864	1.2 V	-2	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-3FTG256I	6864	1.2 V	-3	Halogen-Free ftBGA	256	IND
LCMXO2-7000ZE-1BG332I	6864	1.2 V	-1	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-2BG332I	6864	1.2 V	-2	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-3BG332I	6864	1.2 V	-3	Halogen-Free caBGA	332	IND
LCMXO2-7000ZE-1FG484I	6864	1.2 V	-1	Halogen-Free fpBGA	484	IND
LCMXO2-7000ZE-2FG484I	6864	1.2 V	-2	Halogen-Free fpBGA	484	IND
LCMXO2-7000ZE-3FG484I	6864	1.2 V	-3	Halogen-Free fpBGA	484	IND

Part Number	LUTs	Supply Voltage	Grade	Package	Leads	Temp.
LCMXO2-1200HC-4TG100IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-5TG100IR11	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-6TG100IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	100	IND
LCMXO2-1200HC-4MG132IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-5MG132IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-6MG132IR1 ¹	1280	2.5 V / 3.3 V	-6	Halogen-Free csBGA	132	IND
LCMXO2-1200HC-4TG144IR11	1280	2.5 V / 3.3 V	-4	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-5TG144IR1 ¹	1280	2.5 V / 3.3 V	-5	Halogen-Free TQFP	144	IND
LCMXO2-1200HC-6TG144IR11	1280	2.5 V / 3.3 V	-6	Halogen-Free TQFP	144	IND

1. Specifications for the "LCMXO2-1200HC-speed package IR1" are the same as the "LCMXO2-1200ZE-speed package I" devices respectively, except as specified in the R1 Device Specifications section of this data sheet.

R1 Device Specifications

The LCMXO2-1200ZE/HC "R1" devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices.

- The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I²C ports.
- The on-chip differential input termination resistor value is higher than intended. It is approximately 200Ω as opposed to the intended 100Ω. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software.
- Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result.
- Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details:

Condition	Clamp	Pad Rising IIH Max.	Pad Falling IIH Min.	Steady State Pad High IIH	Steady State Pad Low IIL
VPAD > VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD = VCCIO	ON	10 µA	–10 μA	10 µA	10 µA
VPAD = VCCIO	OFF	1 mA	–1 mA	1 mA	10 µA
VPAD < VCCIO	OFF	10 µA	–10 μA	10 µA	10 µA

- The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt.
- In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization.
- When using the hard I²C IP core, the I²C status registers I2C_1_SR and I2C_2_SR may not update correctly.
- PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10 μsec before returning low.
- Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3 V or 2.5 V supply.

MachXO2 Family Data Sheet Revision History

March 2017

Data Sheet DS1035

Date	Version	Section	Change Summary
March 2017	3.3	DC and Switching Characteristics	Updated the Absolute Maximum Ratings section. Added standards.
			Updated the sysIO Recommended Operating Conditions section. Added standards.
			Updated the sysIO Single-Ended DC Electrical Characteristics sec- tion. Added standards.
			Updated the MachXO2 External Switching Characteristics – HC/HE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the MachXO2 External Switching Characteristics – ZE Devices section. Under 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:1, the D_{VB} and the D_{VA} parameters were changed to D_{IB} and D_{IA} . The parameter descriptions were also modified.
			Updated the sysCONFIG Port Timing Specifications section. Corrected the t_{INITL} units from ns to μ s.
		Pinout Information	Updated the Signal Descriptions section. Revised the descriptions of the PROGRAMN, INITN, and DONE signals.
			Updated the Pinout Information Summary section. Added footnote to MachXO2-1200 32 QFN.
		Ordering Information	Updated the MachXO2 Part Number Description section. Corrected the MG184, BG256, FTG256 package information. Added "(0.8 mm Pitch)" to BG332.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging section. — Updated LCMXO2-1200ZE-1UWG25ITR50 footnote. — Corrected footnote numbering typo. — Added the LCMXO2-2000ZE-1UWG49ITR50 and LCMXO2- 2000ZE-1UWG49ITR1K part numbers. Updated/added footnote/s.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.