
Microchip Technology - PIC24F04KL100-E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (1.375K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f04kl100-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and bussing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F16KL402 family is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KL402 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24F16KL402 FAMILY DEVICES

	PIC24F04KLXXX	PIC24F08KL2XX	PIC24F08KL3XX		PIC24F08KL4XX	PIC24F16KLXXX	
	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash Program Memory (1408 instructions)	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash		GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table	000000h 00002h 00004h 0000FEh 000100h 000104h 0001FEh 000200h
User Memory Space		Program Memory (2816 instructions)	 Program Memory (2816 instructions)	-	Program Memory (2816 instructions)	 Flash Program Memory (5632 instructions)	- 000AFEh
User Me	Unimplemented Read '0'	Unimplemented Read '0'	Unimplemented Read '0'		Unimplemented Read '0'	Unimplemented	002BFEh
			 Data EEPROM (256 bytes)	- 	Data EEPROM (512 bytes)	 Read '0' Data EEPROM (512 bytes)	 7FFE00h 7FFF00h 7FFFFFh 800000h
Ī	Reserved	Reserved	Reserved		Reserved	Reserved	800800h
ace	Unique ID	Unique ID	Unique ID		Unique ID	Unique ID	800802h 800808h
lory Sp	Reserved	Reserved	Reserved		Reserved	Reserved	80080Ah
Mem	Device Config Registers	Device Config Registers	Device Config Registers		Device Config Registers	Device Config Registers	F80000h F8000Eh
Configuration Memory Space	Reserved	Reserved	Reserved		Reserved	Reserved	F80010h FEFFFEh
	DEVID (2)	DEVID (2)	DEVID (2)		DEVID (2)	DEVID (2)	FF0000h FFFFFFh

Note: Memory areas are not displayed to scale.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 8.1** "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24F16KL402 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using Table Read and Table Write operations, similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24F16KL402 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 23.0 "Special Features"**.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24F16KL402 FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

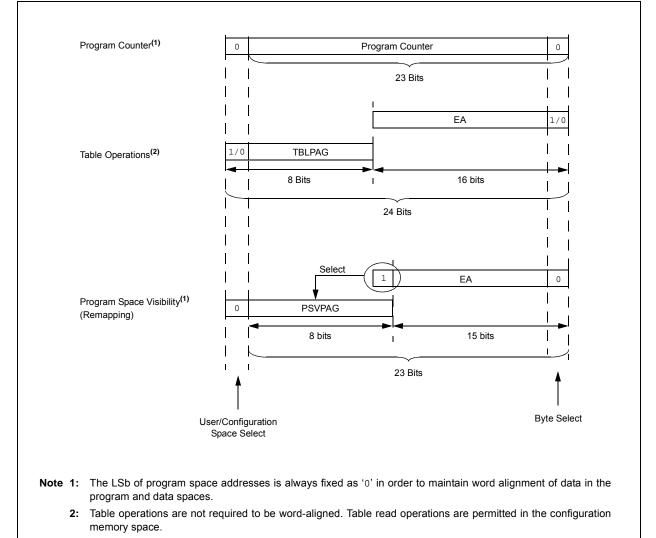
msw Address	most significant wo	ord I	east significant wo	rd	PC Address (Isw Address)
	23	16	8	0	
000001h	0000000				000000h
000003h	0000000				000002h
000005h	0000000				000004h
000007h	0000000				000006h
			\sim		
	Program Memory 'Phantom' Byte (read as '0')	Instruc	tion Width		

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

	чυ.			1 001														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	—	—	—	—	—	_	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	—	—	_	_	—	—	_	—	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	T3IF	T2IF	CCP2IF	_	_	T1IF	CCP1IF	_	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	_	T4IF ⁽¹⁾	_	CCP3IF ⁽¹⁾	_	_	_	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	8800		_	_	_		_	_	_	_	_	T3GIF	_	_	_	_	_	0000
IFS3	008A	—	_	_	—	—	_	_	—	—	_	—	_	_	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	—	0000
IFS4	008C	—	_	_	—	_	_	_	HLVDIF	_	_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	008E	—	_	_	—	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	_	_	T3IE	T2IE	CCP2IE	_	_	T1IE	CCP1IE	_	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	—	T4IE ⁽¹⁾	_	CCP3IE ⁽¹⁾	_	_	_	_	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	0098	_	_	-	—	_	_	_	_		_	T3GIE	_	_	_	_	-	0000
IEC3	009A	_	_		—	_	_	_	_		_	_	-	_	BCL2IE ⁽¹⁾	SSP2IE ⁽¹⁾		0000
IEC4	009C	_	_		—	_	_	_	HLVDIE		_	_	-	_	U2ERIE	U1ERIE		0000
IEC5	009E	_	_		—	_	_	_	_		_	_	-	_	_	_	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	_	_	_	_	_	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	CCP2IP2	CCP2IP1	CCP2IP0		_	_	-	_	_	_	-	4400
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	_	_	_		_	_	-	_	T3IP2	T3IP1	T3IP0	4004
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0		BCL1IP2	BCL1IP1	BCL1IP0	_	SSP1IP2	SSP1IP1	SS1IP0	4444
IPC5	00AE	_	_	-	—	_	_	_	_		_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	_	_	_	_		CCP3IP2(1)	CCP3IP1(1)	CCP3IP0(1)	_	—	—		4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0		INT2IP2	INT2IP1	INT2IP0	_	_	_		4440
IPC9	00B6	_	_	-	—	_	_	—	_		T3GIP2	T3GIP1	T3GIP0	_	_	_		0040
IPC12	00BC	_	_	_	—	_	BCL2IP2(1)	BCL2IP1(1)	BCL2IP0(1)		SSP2IP2(1)	SSP2IP1(1)	SSP2IP0(1)	_	_	_		0440
IPC16	00C4	_	_	_	_	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	—	_	0440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC20	00CC	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: Note 1:

Legend: — = unimplemented, read as '0', r = reserved. Reset values are shown in hexadecimal.


Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

A	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0 PC<22:1>			0					
(Code Execution)			0xx xxxx x	xxx xxxx	x xxxx xxx0					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBI	_PAG<7:0>		Data EA<15:0>					
		د0	xxx xxxx	XXXX XXXX XXXX XXXX						
	Configuration	TBI	_PAG<7:0>	Data EA<15:0>						
		12	xxx xxxx							
Program Space Visibility	User	0	PSVPAG<7:	0>(2) Data EA<14:0>(1)						
(Block Remap/Read)		0	XXXX XXX	xx	x xxx xxxx xxxx xxxx					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on PIC24F16KL402 family devices.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with 15 bits of the EA functioning as the lower bits.

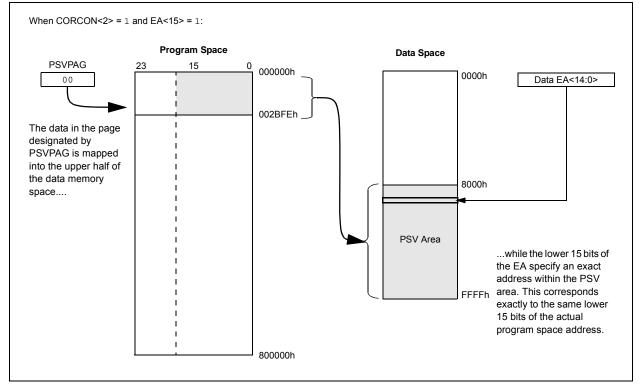
By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location, used as data, should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

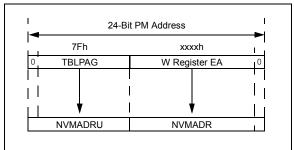

For operations that use PSV and are executed outside of a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle, in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles, in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION


6.3 NVM Address Register

As with Flash program memory, the NVM Address Registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", is unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Table Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note:	Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.
	The C30 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

7.0 RESETS

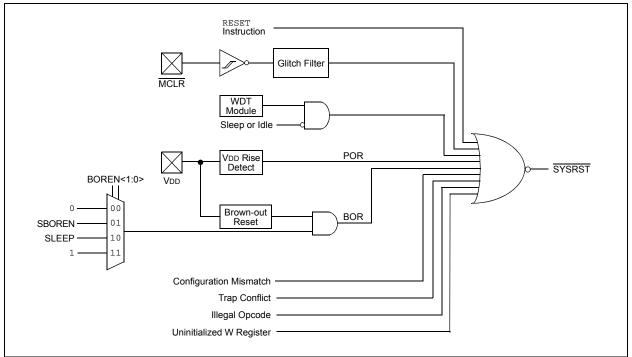
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on a Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value, after a device Reset, will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	0 R/W-0	R/W-0 ⁽³⁾	U-0	U-0	U-0	R/W-0	R/W-0			
TRAP	R IOPUWR	SBOREN	_	—	_	CM	PMSLP			
bit 15							bit 8			
R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EXTR	R SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR			
bit 7							bit 0			
Legend:			:4		a a material in the second					
R = Read		W = Writable b	IT	•	nented bit, read					
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	TRAPR. Tra	p Reset Flag bit								
bit io		Conflict Reset has	occurred							
		Conflict Reset has		b						
bit 14	IOPUWR: III	egal Opcode or L	Jninitialized V	V Access Reset	Flag bit					
	1 = An illega	al opcode detecti	on, an illegal	address mode	or an Uninitial	ized W register	r is used as an			
		Pointer and cau								
	-	al opcode or Unin		-	is not occurred					
bit 13		oftware Enable/D		R bit ⁽³⁾						
		urned on in softw urned off in softw								
bit 12-10	Unimpleme	Unimplemented: Read as '0'								
bit 9	CM: Configu	ration Word Misn	natch Reset I	Flag bit						
		uration Word Mis								
	•	uration Word Mis			ed					
bit 8		gram Memory Po	•	•						
		memory bias vo memory bias vo								
h:+ 7		mal Reset (MCLF			y Sleep					
bit 7		r Clear (pin) Rese	,	ed						
		r Clear (pin) Rese								
bit 6	SWR: Softwa	are Reset (Instru	ction) Flag bi	t						
		instruction has t								
		r instruction has r								
bit 5	SWDTEN: S	oftware Enable/D	Disable of WE)T bit ⁽²⁾						
	1 = WDT is e									
1.11.4	0 = WDT is 0									
bit 4		chdog Timer Time	-							
		e-out has occurre								
Note 1.	All of the Depart	tatua hita may ha	act or closer	d in coffword C	atting one of th	ana hita in aaft	wara daga nat			
Note 1:	All of the Reset s cause a device F	•	set of cleare	eu în soitware. S	beaung one of th	IESE DIIS IN SOT	ware upes not			
2:	If the FWDTEN (is '1' (unprog	rammed), the V	VDT is always o	enabled, regard	dless of the			
	SWDTEN bit set	-		,-						
3.	The SBOREN bi	it is forced to '0' v	vhen disabler	d by the Config	iration hits BO	REN<1.0> (FP	POR<1.0>			

3: The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_						_				
oit 15							bit				
R/W-0	R/W-0					R/W-0	R/W-0				
-		R/W-0	R/W-0	R/W-0	R/W-0						
PM1	PM0	DC1B1	DC1B0	CCP1M3 ⁽²⁾	CCP1M2 ⁽²⁾	CCP1M1 ⁽²⁾	CCP1M0 ⁽²⁾				
oit 7							bit				
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
oit 15-8	Unimplemen	ted: Read as '	י'								
bit 7-6	-	hanced PWM (ration bits							
		2> = 00, 01, 10									
		ssigned as a ca		ompare output;	P1B, P1C and	P1D are assign	ed as port pir				
	<u>If CCP1M<3:2</u>	•				0					
		ge output reve	rse: P1B is mo	dulated; P1C is	active; P1A a	nd P1D are ina	ctive				
		dge output: P	1A, P1B are	modulated wit	h dead-band	control; P1C	and P1D a				
		d as port pins									
		ge output forwa utput: P1A, P1E				are inactive	9				
L:L T 4	-	-									
bit 5-4		PWM Duty Cyc			Daule bits						
	Unused.	Compare mode	<u>s</u> :								
	PWM mode:										
		e the two Leas	t Significant bi	ts (bit 1 and bit	0) of the 10-b	it PWM duty cy	cle. The eid				
		ant bits (DC1B<					, e. e. e. e. g				
bit 3-0	-	ECCP1 Modu	-								
		mode: P1A an			nd P1D are acti	ve-low					
		mode: P1A an									
		l mode: P1A an									
		I mode: P1A an		0		0					
		pare mode: Spe									
	1010 = Compare mode: Generates software interrupt on compare match (CCP1IF bit is set, CCP1 pir reflects I/O state)										
	1001 = Compare mode: Initializes CCP1 pin high; on compare match, forces CCP1 pin low (CCP1IF bi										
	is set			J , F F	,	P	\				
	1000 = Com bit is	pare mode: Init	ializes CCP1 p	oin low; on com	pare match, fo	rces CCP1 pin	high (CCP1				
		ure mode: Ever	y 16th rising e	dge							
	0110 = Captu	ure mode: Ever	y 4th rising ed								
	•	ure mode: Ever									
		ure mode: Ever	y falling edge								
	0011 = Rese	rved bare mode: Tog	ales output on	match (CCD1)	E bit is cot)						
	0010 = Comp 0001 = Rese		gies output on								
		ure/Compare/P	WM is disabled	d (resets CCP1	module)						
Note 1:	This register is im	plemented only	y on PIC24FX)	(KL40X/30X de	evices. For all o	other devices, C	CCP1CON is				
	configured as Reg					,					
-	000414 -0-0- 1										

2: CCP1M<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCP1 match.

REGISTER 17-7: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C[™] MODE)

bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	cknowledge sec ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	
R-0ACKTIM(2)bit 7Legend:R = Readable bit-n = Value at PObit 15-8Uibit 7Aubit 6PCbit 5SCbit 5SCbit 4Bi $\frac{12}{1}$ bit 3SIbit 3SIbit 2SI	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	R/W-0 DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
bit 7 Legend: R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 A(bit 6 P(1 0 bit 5 S(1 0 bit 5 S(1 0 bit 4 B(1 0 bit 3 S(0 bit 3 S(0 bit 2 S(1 0 0 bit 2 S(1 0 0 0 0 0 0 0 0 0 0 0 0 0	R CKTIM: Ack Indicates Not an Act Indicates Not an Act CIE : Stop C Enables in Stop dete CIE : Start C Enables in Start dete DEN: Buffer <u>C Master m</u> is bit is igno	W = Writable '1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge set ondition Interru- nterrupt on det- ction interrupts condition Interru- nterrupt on det- ction interrupts r Overwrite Ena- tode:	bit e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	nented bit, read ared set on the 8 th ing edge of the	d as '0' x = Bit is unkr falling edge of f	nown
Legend: R = Readable bit rn = Value at PO bit 15-8 Ui bit 7 AC bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	nown
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	
bit 15-8 Ui bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 5 S bit 5 S bit 4 B $\frac{ 2 }{1}$ bit 3 SI bit 2 SI bit 2 SI	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	
bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 6 P bit 5 S bit 4 B bit 4 B $ ^2($ 1 bit 3 SI 0 bit 2 SI 1	nimplemen CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete OEN: Buffer <u>C Master m</u> nis bit is igno	Ated: Read as the knowledge Time the I ² C bus is in the chowledge set to the chowledge set	0' e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	edge sequence, d on the 9 th risi p condition l) tart or Restart o	set on the 8 th ing edge of the	falling edge of f	
bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> nis bit is igno	knowledge Tim the I ² C bus is i cknowledge sec ondition Interru nterrupt on det condition Interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	d on the 9 th risi p condition) tart or Restart o	ing edge of the		the SCLx cloc
bit 6 PC bit 5 SC bit 5 SC bit 4 BC $\frac{1}{0}$ bit 4 BC $\frac{1}{2}$ Th $\frac{1}{2}$ 1 0 bit 3 SC 0 bit 3 SC 1 1 1 1 1 1 1 1 1 1 1 1 1	CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ction interrupts r Overwrite Ena	ipt Enable bit ection of a Sto are disabled ⁽¹ ipt Enable bit ection of the S are disabled ⁽¹	p condition) tart or Restart c			
bit 5 SC 1 0 bit 4 BC $\frac{1^2}{1^2}$ $\frac{1^2}{1^2}$ bit 3 SC 1 0 bit 3 SC 1 0 1 0 1 1 1 1 1 1 1 1	CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> his bit is igno	condition Interrunt nterrupt on det ection interrupts r Overwrite Ena	ipt Enable bit ection of the S are disabled ⁽¹	tart or Restart o	conditions		
bit 4 $\begin{bmatrix} 1^2 \\ 1^2 \\ 1 \end{bmatrix}$ bit 3 SI bit 2 SI	= Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ection interrupts r Overwrite Ena lode:	are disabled ⁽¹		conditions		
bit 3 SI bit 2 SI 1	<u>C Master m</u> nis bit is igno	ode:	able bit				
Th I2 1 0 bit 3 SI 0 1 0 0 bit 2 SI 1 1	nis bit is igno						
bit 3 SI 0 1 0 1 0 1 0 1		ored.					
bit 3 SI 1 0 bit 2 SI 1	of the SS		the BF bit = 0		eceived addres	s/data byte, igr	noring the stat
0 bit 2 SI	DAHT: SDA	x Hold Time Se	election bit				
1				after the falling			
	BCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (Sla	ve mode only)		
0		slave bus collis s collision interr		led			
bit 1 AI	HEN: Addre	ess Hold Enable	e bit (Slave mo	ode only)			
	SSPxCO		l be cleared an	x for a matchin nd SCLx will be		ress byte; the	CKP bit of th
		Hold Enable bit		only)			
1	 Following of the SS 	g the 8th falling	-	for a received	data byte; slave	e hardware clea	ars the CKP b
Note 1: This b enable	= Data hold	SPxCON1 regis ding is disabled					

2: The ACKTIM status bit is active only when the AHEN bit or DHEN bit is set.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG,f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP	ws,wa	No Operation	1	1	None
NOP			No Operation	1	1	None
POP	NOPR	f	Pop f from Top-of-Stack (TOS)	1	1	None
FUP	POP	I Wdo	Pop from Top-of-Stack (TOS)	1	1	None
			Pop from Top-of-Stack (TOS) to Wdo	1	2	None
	POP.D	Wnd		1	2	
DUQU	POP.S	£	Pop Shadow Registers		-	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24F16KL402 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24F16KL402 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.5V
Voltage on any combined analog and digital pin, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	-0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 26-1).

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

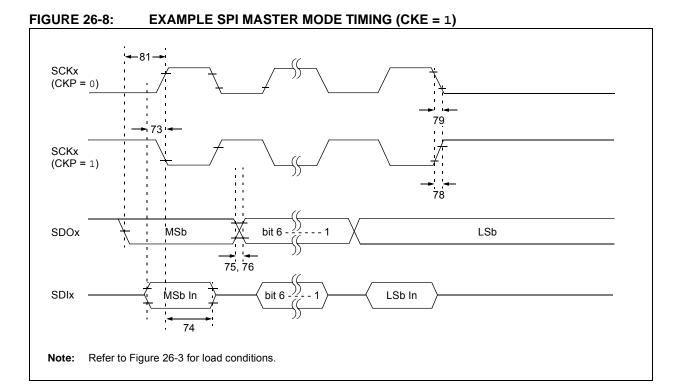
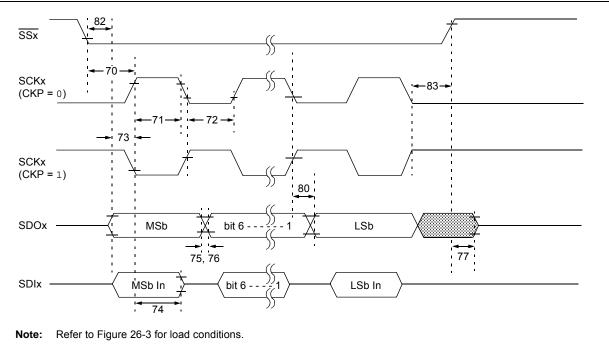

DC CHARACTERIS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions				
Module Differential	Current (Alf	סי)					
DC71	0.21	0.65	μA	1.8V	+85°C		
	0.45	0.95	μA	3.3V	+05 C	Watchdog Timer Current:	
	—	1.30	μA	1.8V	+125°C	∆₩DT ^(2,3)	
	_	1.50	μA	3.3V	+125 C		
DC72	0.69	1.50	μA	1.8V	1950	32 kHz Crystal with Timer1:	
	1.00	1.50	μA	3.3V	+85°C	\triangle SOSC (SOSCSEL = 0) ⁽²⁾	
DC75	5.24	_	μA	1.8V	+85°C		
	5.16	11.00	μA	3.3V	+00 C	∆HLVD ^(2,3)	
	—	12.00	μA	1.8V	+125°C		
	_	15.00	μA	3.3V	+125 C		
DC76	4.15	9.00	μA	3.3V	+85°C	∆BOR ^(2,3)	
	—	11.0	μA	3.3V	+125°C	ABOR	
DC78	0.03 0.20 µA 1.8V		+85°C				
	0.03	0.20	μA	3.3V	+00 C	∆LPBOR ⁽²⁾	
	—	0.40	μA	1.8V			
	—	0.40	μA	3.3V	+125°C		

TABLE 26-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.


2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: This current applies to Sleep only.

TABLE 26-28: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	—	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	FSCK	SCKx Frequency	_	10	MHz	

FIGURE 26-10: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

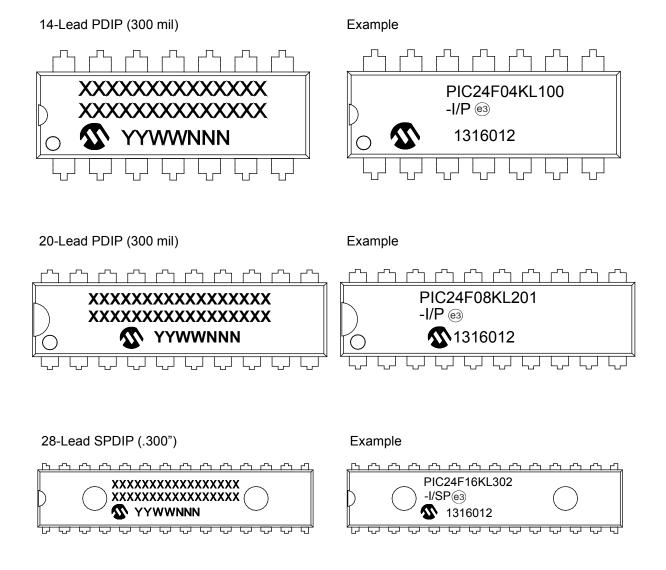
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	I, \overline{SSx} ↓ to SCKx ↓ or SCKx ↑ Input		3 Tcy	_	ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	40	_	ns		
75	TDOR	SDOx Data Output Rise Time	—	25	ns		
76	TDOF	SDOx Data Output Fall Time	—	25	ns		
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	10	50	ns		
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx	—	50	ns		
82	TssL2DoV	SDOx Data Output Valid After SSx	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency	_	10	MHz		

TABLE 26-30: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

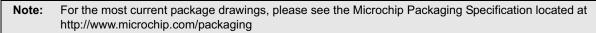
Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	_	Тсү	
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	—	Тсү	
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA Start Condition Setup Tim		100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	—	μs	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μS	After this period, the first clock
			400 kHz mode	0.6	—	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		_	400	pF	

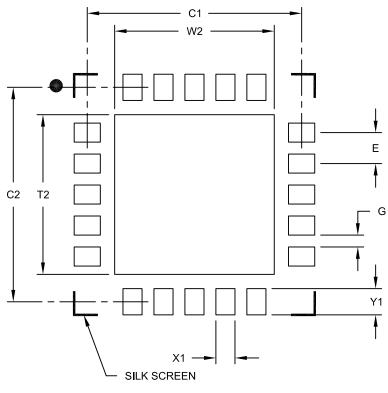

TABLE 26-32: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

27.0 PACKAGING INFORMATION


27.1 Package Marking Information



Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

© 2011-2013 Microchip Technology Inc.

20-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5 mm Body [QFN] With 0.40mm Contact Length

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC				
Optional Center Pad Width	W2			3.35			
Optional Center Pad Length	T2			3.35			
Contact Pad Spacing	C1		4.50				
Contact Pad Spacing	C2		4.50				
Contact Pad Width (X20)	X1			0.40			
Contact Pad Length (X20)	Y1			0.55			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2139A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group – Pin Count —— Tape and Reel FI Temperature Rar Package ———		 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13