

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (1.375K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	- ·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f04kl100-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro® Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"CPU"** (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by a 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete, but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme, with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Mis-aligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a mis-aligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24F16KL402 family devices, the entire implemented data memory lies in Near Data Space.

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region, where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-18.

			SFF	R Space Add	ress				
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0	
000h	Core			ICN	Interrupts			—	
100h	Timers — TMR		२ —	—	— C	CP —	—	—	
200h	MSSP UART		—	—	—	_	I/O	—	
300h	A/D		—	—	—	—	_	—	
400h			—	—	—	_	— AN	SEL —	
500h			—	—	—	_	—	—	
600h	— CMP —					_		_	
700h	_	_	System	NVM/PMD	_	_	_	—	

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block.

	TABLE 4-4:	ICN REGISTER MAP
--	------------	------------------

		-																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE ⁽¹⁾	CN14PDE(1)	CN13PDE(1)	CN12PDE	CN11PDE	—	CN9PDE ⁽²⁾	CN8PDE	CN7PDE ⁽²⁾	CN6PDE ⁽¹⁾	CN5PDE ⁽¹⁾	CN4PDE ⁽¹⁾	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	—	CN30PDE	CN29PDE	—	CN27PDE ⁽²⁾	—	—	CN24PDE ⁽²⁾	CN23PDE ⁽¹⁾	CN22PDE	CN21PDE	_	_	_		CN16PDE ⁽²⁾	0000
CNEN1	0062	CN15IE ⁽¹⁾	CN14IE ⁽¹⁾	CN13IE ⁽¹⁾	CN12IE	CN11IE	_	CN9IE ⁽¹⁾	CN8IE	CN7IE ⁽¹⁾	CN6IE ⁽²⁾	CN5PIE ⁽²⁾	CN4IE ⁽²⁾	CN3IE	CNIE	CN1IE	CN0IE	0000
CNEN2	0064	—	CN30IE	CN29IE	—	CN27IE ⁽²⁾	—	—	CN24IE ⁽²⁾	CN23IE ⁽¹⁾	CN22IE	CN21IE	_	_	_		CN16IE ⁽²⁾	0000
CNPU1	006E	CN15PUE ⁽¹⁾	CN14PUE ⁽¹⁾	CN13PUE ⁽¹⁾	CN12PUE	CN11PUE	—	CN9PUE ⁽¹⁾	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE ⁽²⁾	CN5PUE ⁽²⁾	CN4PUE ⁽²⁾	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	0070	—	CN30PUE	CN29PUE	—	CN27PUE ⁽²⁾	_	—	CN24PUE ⁽²⁾	CN23PUE ⁽¹⁾	CN22PUE	CN21PUE	_	_	_		CN16PUE ⁽²⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	—	—	—	—	—	_	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	T3IF	T2IF	CCP2IF	_	—	T1IF	CCP1IF	_	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	—	T4IF ⁽¹⁾	_	CCP3IF ⁽¹⁾	—	—	_	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	0088	—	_	—	—	_	_	_	_	—	_	T3GIF	—	_		—	_	0000
IFS3	008A	_	_	_	_	_	_	_	_	_	_	_	_	_	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	_	0000
IFS4	008C	—	_	—	—	_	_	_	HLVDIF	—	_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	008E	—	_	—	—	_	_	_	_	—	_	_	_	_		—	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	_	_	T3IE	T2IE	CCP2IE	_	_	T1IE	CCP1IE	—	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	_	T4IE ⁽¹⁾	_	CCP3IE ⁽¹⁾	—	—	_	—	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	0098	—	_	—	—	_	_	_	_	—	_	T3GIE	—	_		—	_	0000
IEC3	009A	—	_	—	—	_	_	—	—	—	_	—	—	—	BCL2IE ⁽¹⁾	SSP2IE ⁽¹⁾	—	0000
IEC4	009C	—	_	—	—	_	_	—	HLVDIE	—	_	—	—	—	U2ERIE	U1ERIE	—	0000
IEC5	009E	—	_	—	—	—	_	—	—	—	_	—	—	—		—	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	—	_	—	—	—	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	CCP2IP2	CCP2IP1	CCP2IP0	—	_	—	—	—		—	—	4400
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	_	—	—	—	_	—	—	—	T3IP2	T3IP1	T3IP0	4004
IPC3	00AA	—	NVMIP2	NVMIP1	NVMIP0	_	_	—	—	—	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	—	BCL1IP2	BCL1IP1	BCL1IP0	—	SSP1IP2	SSP1IP1	SS1IP0	4444
IPC5	00AE	—	—	—	—	—	—	—	—	—	_	—	—	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	_	_	—	—	—	CCP3IP2(1)	CCP3IP1(1)	CCP3IP0(1)	—		—	—	4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—		_	—	4440
IPC9	00B6	—	_	—	—	—	_	—	—	—	T3GIP2	T3GIP1	T3GIP0	—		—	—	0040
IPC12	00BC	—	_	—	—	—	BCL2IP2(1)	BCL2IP1(1)	BCL2IP0(1)	—	SSP2IP2(1)	SSP2IP1(1)	SSP2IP0(1)	—		—	—	0440
IPC16	00C4	_	_	_	_	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	0440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC20	00CC	—	_	_	_				_	_		_			ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: Note 1:

Legend: — = unimplemented, read as '0', r = reserved. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location, used as data, should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside of a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle, in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles, in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0
U2TXIF ⁽	¹⁾ U2RXIF ⁽¹⁾	INT2IF	—	T4IF ⁽¹⁾	—	CCP3IF ⁽¹⁾	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1IF	CNIF	CMIF	BCL1IF	SSP1IF
bit 7							bit 0
Lenend							
Legena:	able bit	M - Mritabla	~i+		controd hit roa	d oo 'O'	
		vv = vvritable i	JIL	0' = 0	nenteu bit, rea	u as u v = Bit is unkny	own
	alFOR				areu		JW11
bit 15		T2 Transmitter	Interrunt Elag	Status hit(1)			
bit 15	1 = Interrupt r	request has occ	urred	Status bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit ⁽¹⁾			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 13	INT2IF: Exter	nal Interrupt 2 I	-lag Status bit				
	1 = Interrupt r	equest has occ	urred				
h:+ 40		request has not	occurrea				
DIL 12 bit 11		ted: Read as () Status hit(1)				
	1 = Interrupt r	equest has occ					
	0 = Interrupt r	request has not	occurred				
bit 10	Unimplemen	ted: Read as '0)'				
bit 9	CCP3IF: Cap	ture/Compare/F	PWM3 Interrup	ot Flag Status b	it ⁽¹⁾		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 8-5	Unimplemen	ted: Read as '0)'				
bit 4	INT1IF: Exter	nal Interrupt 1 I	-lag Status bit				
	1 = Interrupt r	request has occ	urred				
hit 3	CNIE: Input C	equest has not		lag Status bit			
DIL 3	1 = Interrupt r		urred	ay Status bit			
	0 = Interrupt r	request has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status bit	t			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 1	BCL1IF: MSS	SP1 I ² C™ Bus (Collision Interr	upt Flag Status	bit		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	request has not	occurred				
dit U	SSP1IF: MSS	SP1 SPI/IC Eve	ent Interrupt F	lag Status bit			
	\perp = interrupt r	equest has occ					
Note 1:	These bits are un	implemented or	n PIC24FXXK	L10X and PIC2	4FXXKL20X d	levices.	

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP1 ⁽¹⁾		_		U2RXIP1 ⁽¹⁾	U2RXIP0 ⁽¹⁾
bit 15	•======		•====				bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	INT2IP2	INT2IP1	INT2IP0	_	_	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as ')'	(4)			
bit 14-12	U2TXIP<2:0>	: UART2 Trans	mitter Interrup	t Priority bits ⁽¹⁾			
	111 = Interrup	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	iver Interrupt F	Priority bits ⁽¹⁾			
	111 = Interrup	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits			
	111 = Interrup	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as ')'				

REGISTER 8-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	If FSCM is Enabled (FCKSM1 = <u>1</u>):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_	_	_	_	— hit 0
DIL 7							DILU
Legend:							
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ROEN: Refe	erence Oscillator	Output Enabl	e bit			
	1 = Reference	ce oscillator is en	abled on REI	⁼ O pin			
	0 = Referen	ce oscillator is dis	sabled				
bit 14	Unimpleme	nted: Read as '0	,				
bit 13	ROSSLP: R	eference Oscillat	or Output Sto	p in Sleep bit			
	1 = Referen	ce oscillator cont	inues to run ii sabled in Slee	n Sleep			
bit 12	ROSEL: Re	ference Oscillato	r Source Sele	ect bit			
511 12	1 = Primarv	oscillator is used	as the base	clock ⁽¹⁾			
	0 = System	clock is used as	the base cloc	k; the base cloc	ck reflects any	clock switching	of the device
bit 11-8	RODIV<3:0:	>: Reference Oso	cillator Divisor	Select bits			
	1111 = Bas e	e clock value divi	ded by 32,76	8			
	1110 = Base	e clock value divi	ded by 16,38	4			
	1101 = Base	e clock value divi	ded by 8,192				
	1100 = Base	e clock value divi	ded by 4,096				
	1011 = Base	e clock value divi	ded by 2,048				
	1010 = Base	e clock value divi	ded by 1,024				
	1001 = Base	e clock value divi	ded by 256				
	0111 = Base	e clock value divi	ded by 128				
	0110 = Base	e clock value divi	ded by 64				
	0101 = Base	e clock value divi	ded by 32				
	0100 = Base	e clock value divi	ded by 16				
	0011 = Base	e clock value divi	ded by 8				
	0010 = Base	e clock value divi	ded by 4				
	0001 = Base	e clock value divi e clock value	ued by 2				
			,				

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can operate as a free-running, interval timer/counter, or serve as the time counter for a software-based Real-Time Clock (RTC). Timer1 is only reset on initial VDD power-on events. This allows the timer to continue operating as an RTC clock source through other types of device Reset.

Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	—	TSIDL	—	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	IGAIE	TCKPS1	TCKPS0	_	ISYNC	ICS	—
DIL 7							DILU
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timer1 1 = Starts 16 0 = Stops 16	On bit S-bit Timer1 S-bit Timer1					
bit 14	Unimplemen	nted: Read as '	Ο'				
bit 13	TSIDL: Time 1 = Discontin 0 = Continue	r1 Stop in Idle N lues module op s module opera	/lode bit eration when d ition in Idle mo	levice enters Id de	le mode		
bit 12-10	Unimplemen	nted: Read as '	כי				
bit 9-8	T1ECS <1:0>	: Timer1 Exter	ded Clock Sel	ect bits ⁽¹⁾			
	11 = Reserve 10 = Timer1 01 = Timer1 00 = Timer1	ed; do not use uses the LPRC uses the extern uses the Secon	as the clock so al clock from T dary Oscillator	ource TCK (SOSC) as the	e clock source		
bit 7	Unimplemen	nted: Read as '	כ'				
bit 6	TGATE: Time <u>When TCS =</u> This bit is ign <u>When TCS =</u> 1 = Gated tir 0 = Gated tir	er1 Gated Time <u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	Accumulation n is enabled n is disabled	Enable bit			
bit 5-4	TCKPS<1:0>	-: Timer1 Input	Clock Prescale	e Select bits			
	11 = 1:256 $10 = 1:64$ $01 = 1:8$ $00 = 1:1$						
bit 3	Unimplemen	nted: Read as '	D'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	ect bit		
	When TCS = 1 = Synchro 0 = Does no When TCS = This bit is ign	<u>1:</u> onizes external of ot synchronize e <u>0:</u> ored.	clock input external clock i	nput			
bit 1	TCS: Timer1 1 = Timer1 c 0 = Internal	Clock Source S clock source is s clock (Fosc/2)	Select bit selected by T1I	ECS<1:0>			
bit 0	Unimplemen	nted: Read as '	כ'				
Note 1:	The T1ECSx bits	are valid only v	when TCS = 1.				

14.0 TIMER3 MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer3 timer/counter modules incorporate these features:

- Software-selectable operation as a 16-bit timer or counter
- One 16-bit readable and writable Timer Value register

- Selectable clock source (internal or external) with device clock, SOSC or LPRC oscillator options
- · Interrupt-on-overflow
- Multiple timer gating options, including:
 - User-selectable gate sources and polarity
 - Gate/toggle operation
 - Single Pulse (One-Shot) mode
- · Module Reset on ECCP Special Event Trigger

The Timer3 module is controlled through the T3CON register (Register 14-1). A simplified block diagram of the Timer3 module is shown in Figure 14-1.

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

FIGURE 14-1: TIMER3 BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	
DIT 15							DIL
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC		TMR3ON
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
hit 15 0	Unimplomen	ted. Dood oo ''	<u>,</u> ,				
bit 7.6		Leu. Reau as	J Nr Source Sele	at hita			
DIT 7-6		>: Timera Cioc	K Source Sele	Ct DIts			
	11 = LOW-POV	wer RC Oscillat	or (LPRC)				
	10 = External	CIOCK SOURCE	selected by 13	CON<3>)			
	01 = Instruction	clock (FOSC)	(2)				
hit 5-4			t Clock Prescal	le Select hits			
511 5 4	11 = 1.8 Pres	cale value					
	10 = 1.0 Pres	cale value					
	01 = 1.2 Pres	cale value					
	00 = 1:1 Pres	scale value					
bit 3	T3OSCEN: T	imer3 Oscillato	r Enable bit				
	1 = SOSC (S)	econdary Oscil	lator) is used a	s a clock source	e		
	0 = T3CK dig	ital input pin is	used as a cloci	k source	0		
bit 2	T3SYNC: Tim	ner3 External C	lock Input Syn	chronization Co	ntrol bit		
	When TMR30	CS<1:0> = 1x:					
	1 = Does not	synchronize the	e external cloc	k input			
	0 = Synchron	izes the extern	al clock input ⁽²)			
	When TMR30	<u> CS<1:0> = 0x:</u>					
	This bit is ign	ored; Timer3 us	ses the internal	l clock.			
bit 1	Unimplemen	ted: Read as '	כ'				
bit 0	TMR3ON: Tir	ner3 On bit					
	1 = Enables 7	Fimer3					

features.

2: This option must be selected when the timer will be used with ECCP/CCP.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission Through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- Two-Level Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- Two-Level Deep, FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#litl0,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C, DC, N, OV, Z
	SUBB	Wb.Ws.Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C. DC. N. OV. Z
	STIBB	Wb #lit5 Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C DC N OV Z
CIIBP	SUBD	f	f = WREG = f	1	1	
DODIC	SUBP	f WREC	WREG = WREG - f	1	1	
	SUBP	Wh We Wd	Wd = Ws - Wb	1	1	
	SUBP	Wb #lit5 Wd	Wd = lit5 - Wb	1	1	C DC N OV Z
CUDDD	CUDDD	۳۵, ۳1105, Wd	$f = W/PEC = f = (\overline{C})$	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	1		1	1	C, DC, N, OV, Z
	SUBBR	I,WREG		1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	Wd = lit5 - Wb - (C)	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	Vol	Output Low Voltage							
DO10		All I/O Pins	—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V	
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V	
			—		0.4	V	IOL = 0.4 mA	VDD = 2.0V	
	Vон	Output High Voltage							
DO20		All I/O Pins	3	—	—	V	Iон = -3.0 mA	VDD = 3.6V	
			1.6	—	—	V	Iон = -1.0 mA	VDD = 2.0V	
DO26		OSC2/CLKO	3	—	—	V	Юн = -1.0 mA	VDD = 3.6V	
			1.6	—	—	V	Iон = -0.5 mA	VDD = 2.0V	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at +25°C unless otherwise stated.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				Conditions	
-		Program Flash Memory						
D130	Eр	Cell Endurance	10,000 ⁽²⁾	_	—	E/W		
D131	VPR	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage	
D133A	Tiw	Self-Timed Write Cycle Time	_	2	—	ms		
D134	TRETD	Characteristic Retention	40	_	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current During Programming	_	10	—	mA		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

TABLE 26-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first clock pulse is generated	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	1.27 BSC				
Overall Height	A			2.65		
Molded Package Thickness	A2	2.05 -		-		
Standoff §	A1	0.10 -		0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	Dimension Limits			MAX	
Number of Pins	Ν		28		
Pitch	е	0.65 BSC			
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width		0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B