

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | PIC                                                                          |
| Core Size                  | 16-Bit                                                                       |
| Speed                      | 32MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                              |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                  |
| Number of I/O              | 17                                                                           |
| Program Memory Size        | 4KB (1.375K x 24)                                                            |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 512 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 20-VQFN Exposed Pad                                                          |
| Supplier Device Package    | 20-VQFN (5x5)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24f04kl101-e-mq |
|                            |                                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:



For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC<sup>™</sup> and PICmicro<sup>®</sup> Devices"
- AN849, "Basic PICmicro® Oscillator Design"
- AN943, "Practical PICmicro<sup>®</sup> Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

## 2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k $\Omega$  to 10 k $\Omega$  resistor to Vss on unused pins and drive the output to logic low.

## 3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

## 3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

### TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

| Instruction | Description                                                 |  |  |  |
|-------------|-------------------------------------------------------------|--|--|--|
| ASR         | Arithmetic shift right source register by one or more bits. |  |  |  |
| SL          | Shift left source register by one or more bits.             |  |  |  |
| LSR         | Logical shift right source register by one or more bits.    |  |  |  |

### 4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

| Note: | The TBLRDH and TBLWTH instructions are |
|-------|----------------------------------------|
|       | not used while accessing data EEPROM   |
|       | memory.                                |

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'.

 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

**Note:** Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.





## **REGISTER 7-1: RCON: RESET CONTROL REGISTER<sup>(1)</sup> (CONTINUED)**

- bit 3
   SLEEP: Wake-up from Sleep Flag bit

   1 = Device has been in Sleep mode

   0 = Device has not been in Sleep mode

   bit 2
   IDLE: Wake-up from Idle Flag bit

   1 = Device has been in Idle mode

   0 = Device has not been in Idle mode

   0 = Device has not been in Idle mode

   bit 1
   BOR: Brown-out Reset Flag bit

   1 = A Brown-out Reset has occurred (the BOR is also set after a POR)

   0 = A Brown-out Reset has not occurred

   bit 0
   POR: Power-on Reset Flag bit
  - 1 = A Power-up Reset has occurred
    - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
  - **3:** The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

| Flag Bit          | Setting Event                                     | Clearing Event          |
|-------------------|---------------------------------------------------|-------------------------|
| TRAPR (RCON<15>)  | Trap Conflict Event                               | POR                     |
| IOPUWR (RCON<14>) | Illegal Opcode or Uninitialized W Register Access | POR                     |
| CM (RCON<9>)      | Configuration Mismatch Reset                      | POR                     |
| EXTR (RCON<7>)    | MCLR Reset                                        | POR                     |
| SWR (RCON<6>)     | RESET Instruction                                 | POR                     |
| WDTO (RCON<4>)    | WDT Time-out                                      | PWRSAV Instruction, POR |
| SLEEP (RCON<3>)   | PWRSAV #SLEEP Instruction                         | POR                     |
| IDLE (RCON<2>)    | PWRSAV #IDLE Instruction                          | POR                     |
| BOR (RCON<1>)     | POR, BOR                                          | —                       |
| POR (RCON<0>)     | POR                                               | —                       |

#### TABLE 7-1: RESET FLAG BIT OPERATION

**Note:** All Reset flag bits may be set or cleared by the user software.

### 7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator **Configuration**".

# TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

| Reset Type | Clock Source Determinant  |
|------------|---------------------------|
| POR        | FNOSCx Configuration bits |
| BOR        | (FNOSC<10:8>)             |
| MCLR       | COSCx Control bits        |
| WDTO       | (OSCCON<14:12>)           |
| SWR        |                           |

## 7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

| Reset Type         | Clock Source | SYSRST Delay | System Clock<br>Delay | Notes      |
|--------------------|--------------|--------------|-----------------------|------------|
| POR <sup>(6)</sup> | EC           | TPOR + TPWRT | —                     | 1, 2       |
|                    | FRC, FRCDIV  | TPOR + TPWRT | TFRC                  | 1, 2, 3    |
|                    | LPRC         | TPOR + TPWRT | TLPRC                 | 1, 2, 3    |
|                    | ECPLL        | TPOR + TPWRT | Тьоск                 | 1, 2, 4    |
|                    | FRCPLL       | TPOR + TPWRT | TFRC + TLOCK          | 1, 2, 3, 4 |
|                    | XT, HS, SOSC | TPOR+ TPWRT  | Тоѕт                  | 1, 2, 5    |
|                    | XTPLL, HSPLL | TPOR + TPWRT | TOST + TLOCK          | 1, 2, 4, 5 |
| BOR                | EC           | TPWRT        | —                     | 2          |
|                    | FRC, FRCDIV  | TPWRT        | TFRC                  | 2, 3       |
|                    | LPRC         | TPWRT        | TLPRC                 | 2, 3       |
|                    | ECPLL        | TPWRT        | Тьоск                 | 2, 4       |
|                    | FRCPLL       | TPWRT        | TFRC + TLOCK          | 2, 3, 4    |
|                    | XT, HS, SOSC | TPWRT        | Тоѕт                  | 2, 5       |
|                    | XTPLL, HSPLL | TPWRT        | TFRC + TLOCK          | 2, 3, 4    |
| All Others         | Any Clock    | _            | —                     | None       |

## TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.

3: TFRC and TLPRC = RC oscillator start-up times.

**4:** TLOCK = PLL lock time.

**5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.

**6:** If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 26.0 "Electrical Characteristics".

### 8.3 Interrupt Control and Status Registers

Depending on the particular device, the PIC24F16KL402 family of devices implements up to 28 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC7, ICP9, IPC12, ICP16, ICP18 and IPC20
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIV table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU priority level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All interrupt registers are described in Register 8-3 through Register 8-30, in the following sections.

| R/W-0                                                                                                                                                                                                                                                                                                                                                        | R-0, HSC                                                                                                                                                                                                                                                                                | U-0              | U-0            | U-0               | U-0              | U-0             | U-0    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------------|------------------|-----------------|--------|
| ALTIVT                                                                                                                                                                                                                                                                                                                                                       | DISI                                                                                                                                                                                                                                                                                    | —                | —              | —                 | —                | —               | —      |
| bit 15                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                  |                |                   |                  |                 | bit 8  |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                  |                |                   |                  |                 |        |
| U-0                                                                                                                                                                                                                                                                                                                                                          | U-0                                                                                                                                                                                                                                                                                     | U-0              | U-0            | U-0               | R/W-0            | R/W-0           | R/W-0  |
| —                                                                                                                                                                                                                                                                                                                                                            | —                                                                                                                                                                                                                                                                                       | —                |                | —                 | INT2EP           | INT1EP          | INT0EP |
| bit 7                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                  |                |                   |                  |                 | bit 0  |
|                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                  |                |                   |                  |                 |        |
| Legend:                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         | HSC = Hardwa     | are Settable/C | learable bit      |                  |                 |        |
| R = Readable                                                                                                                                                                                                                                                                                                                                                 | e bit                                                                                                                                                                                                                                                                                   | W = Writable b   | bit            | U = Unimplem      | nented bit, read | d as '0'        |        |
| -n = Value at                                                                                                                                                                                                                                                                                                                                                | POR                                                                                                                                                                                                                                                                                     | '1' = Bit is set |                | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |
| bit 14<br>bit 13-3                                                                                                                                                                                                                                                                                                                                           | ALTIVT: Enable Alternate Interrupt Vector Table bit<br>1 = Uses Alternate Interrupt Vector Table<br>0 = Uses standard (default) vector table<br>DISI: DISI Instruction Status bit<br>1 = DISI instruction is active<br>0 = DISI instruction is not active<br>Unimplemented: Read as '0' |                  |                |                   |                  |                 |        |
| bit 2       INT2EP: External Interrupt 2 Edge Detect Polarity Select bit         1 = Interrupt on negative edge         0 = Interrupt on positive edge         bit 1       INT1EP: External Interrupt 1 Edge Detect Polarity Select bit         1 = Interrupt on negative edge         0 = Interrupt on negative edge         0 = Interrupt on negative edge |                                                                                                                                                                                                                                                                                         |                  |                |                   |                  |                 |        |
| bit 0                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>0 = Interrupt on positive edge</li> <li>INTOEP: External Interrupt 0 Edge Detect Polarity Select bit</li> <li>1 = Interrupt on negative edge</li> <li>0 = Interrupt on positive edge</li> </ul>                                                                                |                  |                |                   |                  |                 |        |

### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

## 8.4 Interrupt Setup Procedures

### 8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

**Note:** At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

### 8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

## 8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

#### 8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

## 11.3 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the PIC24F16KL402 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to VSS by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

**Note:** Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

### EXAMPLE 11-1: PORT WRITE/READ EXAMPLE (ASSEMBLY LANGUAGE)

| MOV  | #0xFF00, W0 | ; Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs |
|------|-------------|-------------------------------------------------------------|
| MOV  | W0, TRISB   |                                                             |
| MOV  | #0x00FF, W0 | ; Enable PORTB<15:8> digital input buffers                  |
| MOV  | W0, ANSB    |                                                             |
| NOP  |             | ; Delay 1 cycle                                             |
| BTSS | PORTB, #13  | ; Next Instruction                                          |
|      |             |                                                             |

#### EXAMPLE 11-2: PORT WRITE/READ EXAMPLE (C LANGUAGE)

| TRISB = 0xFF00;          | // Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs |
|--------------------------|--------------------------------------------------------------|
| ANSB = $0 \times 00 FF;$ | // Enable PORTB<15:8> digital input buffers                  |
| NOP();                   | // Delay 1 cycle                                             |
| if(PORTBbits.RB13 == 1)  | // execute following code if PORTB pin 13 is set.            |
| {                        |                                                              |
| }                        |                                                              |

#### U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 \_ \_ bit 15 bit 8 R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 P(1) S(1) R/W SMP CKE D/A UA BF bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 SMP: Slew Rate Control bit In Master or Slave mode: 1 = Slew rate control is disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control is enabled for High-Speed mode (400 kHz) bit 6 CKE: SMBus Select bit In Master or Slave mode: 1 = Enables SMBus specific inputs 0 = Disables SMBus specific inputs D/A: Data/Address bit bit 5 In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: Stop bit<sup>(1)</sup> bit 4 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last S: Start bit(1) bit 3 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last bit 2 R/W: Read/Write Information bit In Slave mode:(2) 1 = Read 0 = Write In Master mode:(3) 1 = Transmit is in progress 0 = Transmit is not in progress bit 1 **UA:** Update Address bit (10-Bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPxADD register 0 = Address does not need to be updated Note 1: This bit is cleared on RESET and when SSPEN is cleared. This bit holds the R/W bit information following the last address match. This bit is only valid from the 2: address match to the next Start bit, Stop bit or not ACK bit.

SSPxSTAT: MSSPx STATUS REGISTER (I<sup>2</sup>C<sup>™</sup> MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

**REGISTER 17-2:** 

NOTES:

## REGISTER 23-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER

| R/P-1                                  | U-1                                                                                          | U-1                            | U-0                                                                             | U-0               | U-0              | R/P-1           | R/P-1 |  |
|----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|-------------------|------------------|-----------------|-------|--|
| DEBUG                                  | —                                                                                            | —                              | —                                                                               | —                 | —                | ICS1            | ICS0  |  |
| bit 7 bit 0                            |                                                                                              |                                |                                                                                 |                   |                  |                 |       |  |
|                                        |                                                                                              |                                |                                                                                 |                   |                  |                 |       |  |
| Legend:                                |                                                                                              |                                |                                                                                 |                   |                  |                 |       |  |
| R = Readable                           | e bit                                                                                        | P = Programn                   | nable bit                                                                       | U = Unimplem      | nented bit, read | l as '0'        |       |  |
| -n = Value at                          | POR                                                                                          | '1' = Bit is set               |                                                                                 | '0' = Bit is clea | ared             | x = Bit is unkn | iown  |  |
| bit 7<br>bit 6-5<br>bit 4-2<br>bit 1-0 | 1 = Backgroun<br>0 = Backgroun<br>Unimplement<br>ICS<1:0:> ICI<br>11 = PGEC1/<br>10 = PGEC2/ | PGED2 are use<br>PGED3 are use | disabled<br>nctions are en<br>,'<br>,'<br>s<br>ed for program<br>ed for program |                   | gging the device | ce              |       |  |

Note 1: PGEC1/PGED1 are not available on PIC24F04KL100 (14-pin) devices.

## 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





|                          | N         | <b>IILLIMETER</b> | S         |      |
|--------------------------|-----------|-------------------|-----------|------|
| Dimension                | Limits    | MIN               | NOM       | MAX  |
| Number of Pins           | N         |                   | 28        |      |
| Pitch                    | е         |                   | 1.27 BSC  |      |
| Overall Height           | A         | -                 | -         | 2.65 |
| Molded Package Thickness | A2        | 2.05              | -         | -    |
| Standoff §               | A1        | 0.10              | -         | 0.30 |
| Overall Width            | E         |                   | 10.30 BSC |      |
| Molded Package Width     | E1        | 7.50 BSC          |           |      |
| Overall Length           | D         | 17.90 BSC         |           |      |
| Chamfer (Optional)       | h         | 0.25              | -         | 0.75 |
| Foot Length              | L         | 0.40 - 1.27       |           |      |
| Footprint                | L1        |                   | 1.40 REF  |      |
| Lead Angle               | Θ         | 0°                | -         | -    |
| Foot Angle               | $\varphi$ | 0° - 8°           |           |      |
| Lead Thickness           | С         | 0.18 - 0.33       |           |      |
| Lead Width               | b         | 0.31 - 0.51       |           |      |
| Mold Draft Angle Top     | α         | 5° - 15°          |           |      |
| Mold Draft Angle Bottom  | β         | 5°                | -         | 15°  |

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

## 14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | N    | <b>IILLIMETER</b> | S        |      |
|--------------------------|------|-------------------|----------|------|
| Dimension                | MIN  | NOM               | MAX      |      |
| Number of Pins           | N    |                   | 14       |      |
| Pitch                    | е    |                   | 0.65 BSC |      |
| Overall Height           | A    | -                 | -        | 1.20 |
| Molded Package Thickness | A2   | 0.80              | 1.00     | 1.05 |
| Standoff                 | A1   | 0.05              | -        | 0.15 |
| Overall Width            | E    | 6.40 BSC          |          |      |
| Molded Package Width     | E1   | 4.30              | 4.40     | 4.50 |
| Molded Package Length    | D    | 4.90              | 5.00     | 5.10 |
| Foot Length              | L    | 0.45              | 0.60     | 0.75 |
| Footprint                | (L1) | 1.00 REF          |          |      |
| Foot Angle               | φ    | 0°                | -        | 8°   |
| Lead Thickness           | С    | 0.09              | -        | 0.20 |
| Lead Width               | b    | 0.19              | -        | 0.30 |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

## 20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units            | MILLIMETERS |      |      |
|--------------------------|------------------|-------------|------|------|
|                          | Dimension Limits | MIN         | NOM  | MAX  |
| Number of Pins           | N                | 20          |      |      |
| Pitch                    | е                | 0.65 BSC    |      |      |
| Overall Height           | А                | -           | -    | 2.00 |
| Molded Package Thickness | A2               | 1.65        | 1.75 | 1.85 |
| Standoff                 | A1               | 0.05        | -    | -    |
| Overall Width            | E                | 7.40        | 7.80 | 8.20 |
| Molded Package Width     | E1               | 5.00        | 5.30 | 5.60 |
| Overall Length           | D                | 6.90        | 7.20 | 7.50 |
| Foot Length              | L                | 0.55        | 0.75 | 0.95 |
| Footprint                | L1               | 1.25 REF    |      |      |
| Lead Thickness           | С                | 0.09        | -    | 0.25 |
| Foot Angle               | ¢                | 0°          | 4°   | 8°   |
| Lead Width               | b                | 0.22        | -    | 0.38 |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

NOTES:

#### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

## QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-620-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

## **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Cleveland** Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

**Canada - Toronto** Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

**China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

**India - New Delhi** Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

**Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

**Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

**Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

**France - Paris** Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

**Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**Sweden - Stockholm** Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13