E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (1.375K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f04kl101-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6	: Т	IMER	REGIS	TER N	IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Reg	gister							0000
PR1	0102								Tir	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000
PR2	0108	_	_	_	_	_	_	_	_				Timer2 Perio	d Register				OOFF
T2CON	010A	_	_	_	_	_	_	_	_	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Reg	gister							0000
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	_				Timer4 Perio	d Register				00FF
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	—	_	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1				1				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	_	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_			Capture/Co	mpare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	VI3 Register	Low Byte			0000
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-8: MSSP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP1BUF	0200	_	—	_	_		—	—	—			MSSP1 F	Receive Buff	er/Transmit	Register			00xx
SSP1CON1	0202	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	0204	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	0206	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	0208	_	_	_	_	_	_	_	_	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000
SSP1ADD	020A	—	_	_	_	_	—	—	_					ter (I ² C™ S Register (I ² 0		ode)		0000
SSP1MSK	020C	_		_	_		_	_			М	SSP1 Addre	ess Mask R	egister (I ² C	Slave Mode	e)		00FF
SSP2BUF ⁽¹⁾	0210	_		_	_		_	_				MSSP2 F	Receive Buff	er/Transmit	Register			00xx
SSP2CON1(1)	0212	_		_	_		_	_		WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2(1)	0214	_	_	_	_		_	_		GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3(1)	0216	_	_	_	—	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	0218	_	_	_	_	_	_	_	_	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	021A	_	_	_	_	_	—	_	—		MSS			ster (I ² C Sla Register (I ² C		ode)		0000
SSP2MSK ⁽¹⁾	021C	_	-	_	_	_	_	_			М	SSP2 Addre	ess Mask R	egister (I ² C	Slave Mode	e)		00FF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-9: UART REGISTER MAP

IADLL 4	J .	UANT																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_		_				UART1	Transmit R	egister				xxxx
U1RXREG	0226	_	_	_	_	_		_				UART1	Receive Re	egister				0000
U1BRG	0228							Baud Ra	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_		_				UART2	Transmit R	egister				xxxx
U2RXREG	0236	_	_	_	_	_		_				UART2	Receive Re	egister				0000
U2BRG	0238							Baud Ra	ate Genera	tor Prescaler	Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	—	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	TOST + TLOCK	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Тоѕт	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	—	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.

3: TFRC and TLPRC = RC oscillator start-up times.

4: TLOCK = PLL lock time.

5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.

6: If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 26.0 "Electrical Characteristics".

8.3 Interrupt Control and Status Registers

Depending on the particular device, the PIC24F16KL402 family of devices implements up to 28 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC7, ICP9, IPC12, ICP16, ICP18 and IPC20
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIV table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU priority level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All interrupt registers are described in Register 8-3 through Register 8-30, in the following sections.

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—		_	—	—	—		DC ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7				•			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as 'o)'				
bit 7-5	IPL<2:0>: CF	PU Interrupt Price	ority Level Stat	us bits ^(2,3)			
	111 = CPU lr	nterrupt Priority	Level is 7 (15)	user interrupts	s disabled		
		nterrupt Priority	• • •				
		nterrupt Priority	()				
		nterrupt Priority					
		nterrupt Priority	• • •				
		nterrupt Priority					
		nterrupt Priority	• • •				
		nterrunt Priority	()				

- 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U1RXIP2	U1RXIP1	U1RXIP0		_	_	
bit 15			L		l		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	_	T3IP2	T3IP1	T3IP0
bit 7			•				bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-12		>: UART1 Rece pt is Priority 7 (pt is Priority 1	•				
	000 = Interru	pt source is dis					
bit 11-3	•	ted: Read as '					
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits				
	111 = Interru • •	pt is Priority 7(highest priority	interrupt)			
	•						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2 ⁽¹⁾	U2TXIP1 ⁽¹⁾	U2TXIP0 ⁽¹⁾	—	U2RXIP2 ⁽¹⁾	U2RXIP1 ⁽¹⁾	U2RXIP0 ⁽¹⁾
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT2IP2	INT2IP1	INT2IP0	_	—	_	
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
							-
bit 15	Unimplemen	ted: Read as 'o)'				
bit 14-12	U2TXIP<2:0>	: UART2 Trans	mitter Interrup	t Priority bits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
		ot source is disa	abled				
bit 11	Unimplemen	ted: Read as 'o)'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	iver Interrupt F	Priority bits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	•						
	• 001 = Interrup						
	000 = Interru	ot source is disa					
bit 7	000 = Interru Unimplemen	ot source is disa ted: Read as 'o)'				
bit 7 bit 6-4	000 = Interru Unimplemen INT2IP<2:0>:	ot source is disa ted: Read as 'o External Intern	^{)'} upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>:	ot source is disa ted: Read as 'o	^{)'} upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>:	ot source is disa ted: Read as 'o External Intern	^{)'} upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>:	ot source is disa ted: Read as 'o External Intern	^{)'} upt 2 Priority b				
	000 = Interrup Unimplement INT2IP<2:0>: 111 = Interrup • • 001 = Interrup	ot source is disa ted: Read as 'o External Intern ot is Priority 7 (I ot is Priority 1	₎ ' upt 2 Priority b nighest priority				
	000 = Interrup Unimplement INT2IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup	ot source is disa ted: Read as 'c External Intern ot is Priority 7 (I	₎ ' upt 2 Priority b nighest priority abled				

REGISTER 8-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-30: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15				•		·	bit 8
U-0		R-0					
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit (
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 14	0 = No interr	vhen the CPU p upt request is le aintain as '0'			errupt priority)		
bit 14	Reserved: M			0			
bit 13	VHOLD: Vect	tor Hold bit					
	1 = VECNUN current in 0 = VECNUN	//<6:0> will cor nterrupt //<6:0> will con	tain the value	e of the highe of the last Ac	rupt is Stored in st priority pend knowledged inte ther interrupts a	ling interrupt, i errupt (last inte	instead of the
bit 12	Unimplemen	ted: Read as ')'				
bit 11-8	1111 = CPU • • • 0001 = CPU	w CPU Interrup Interrupt Priorit Interrupt Priorit Interrupt Priorit	y Level is 15 y Level is 1	el bits			
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0	VECNUM<6:	0>: Vector Num	ber of Pendin	g Interrupt bits	5		
	0111111 = Ir • •	nterrupt vector p	pending is Nu	mber 135			
		nterrupt vector p nterrupt vector p					

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

PIC24F16KL402 family devices consist of two types of secondary oscillators:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
 - High-Power/High-Accuracy mode
 - Low-Power/Low-Accuracy mode

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 23.2 "Configuration Bits"). The Primary Configuration bits, Oscillator POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits. POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSMx Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC oscillator. OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)

Note 1: Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_		—		<u> </u>		—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾	
bit 7							bit (
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown	
bit 15-6	Unimplement	ted: Read as '	0'					
bit 5-4	-			it 0 for CCPx Mo	odule bits			
		Compare mode						
	Unused.							
	Unused.							
	Unused. <u>PWM mode:</u>							
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh	
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh	
bit 3-0	<u>PWM mode:</u> These bits are Most Significa		<9:2>) of the d	uty cycle are fou			cle. The eigh	
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2 ^{>}) of the d	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe	<9:2 ^{>}) of the d e Mode Select ecial Event Trig	uty cycle are fou	und in CCPRxL	 tch (CCPxIF bi	t is set)	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time ire interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time ire interrupt on co pin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time ire interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time ire interrupt on c pin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the die e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on c pin high; on con n low; on compar-	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on c pin high; on con n low; on compar-	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on c pin high; on con n low; on compar-	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on co pin high; on con n low; on compar- idge lge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on c pin high; on con n low; on compar-	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of the received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data; at least one more character can be read 0 = Receive buffer is empty

REGISTER 19-5: AD1CSSL: A/D INPUT SCAN SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			-	<15:8> ⁽¹⁾					
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CSSL<	7:6>	_			CSSL<4:0>(1)				
bit 7							bit 0		
Legend:									
R = Readable b	it	W = Writable b	oit	U = Unimplem	nented bit, read	ad as '0'			
-n = Value at PO	DR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
				(1)					
		A/D Input Pin							
		onding analog ch hannel omitted f		ed for input scan In					
bit 5 L	Jnimplemer	nted: Read as 'o)'						
bit 4-0 C	CSSL<4:0>:	A/D Input Pin S	can Selection	bits ⁽¹⁾					
	1 = Corresponding analog channel selected for input scan								
(= Analog c	hannel omitted f	rom input sca	in					

REGISTER 19-6: ANCFG: ANALOG INPUT CONFIGURATION REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — — VBGEI									
U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — VBGEI bit 7 Image: State	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — — VBGEI bit 7 Legend:	—	—	—	—	—	—	_	—	
— — — — VBGEI bit 7 I I I I Legend: I I I I	bit 15							bit 8	
— — — — VBGEI bit 7 I I I I Legend: I I I I									
bit 7	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
Legend:	_	—	—	—	—	—	—	VBGEN	
	bit 7							bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	Legend:								
	R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

bit 0

-n = Value at POR

VBGEN: Internal Band Gap Reference Enable bit

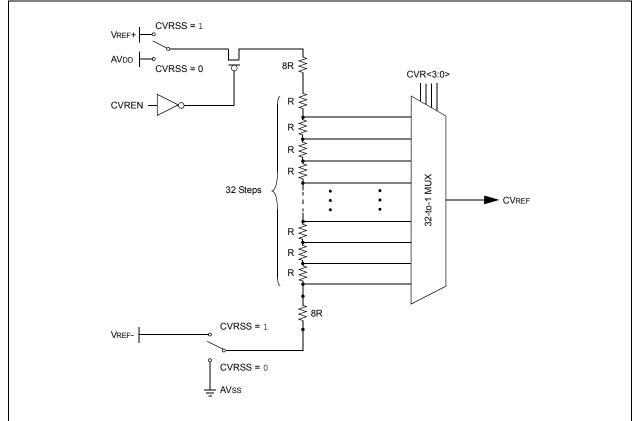
'1' = Bit is set

1 = Internal band gap voltage is available as a channel input to the A/D Converter

0 = Band gap is not available to the A/D Converter

x = Bit is unknown

21.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24F16KL402 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24F16KL402 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

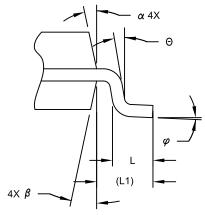
Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.5V
Voltage on any combined analog and digital pin, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	-0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

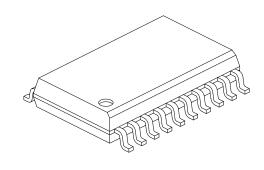
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 26-1).

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERIS	$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $					
Parameter No.	Typical ⁽¹⁾	Max	Units			Conditions
Module Differential	Current (Alf	סי)				
DC71	0.21	0.65	μA	1.8V	+85°C	
	0.45	0.95	μA	3.3V	+05 C	Watchdog Timer Current:
	—	1.30	μA	1.8V	+125°C	∆₩DT ^(2,3)
	_	1.50	μA	3.3V	+125 C	
DC72	0.69	1.50	μA	1.8V	1950	32 kHz Crystal with Timer1:
	1.00	1.50	μA	3.3V	+85°C	\triangle SOSC (SOSCSEL = 0) ⁽²⁾
DC75	5.24	_	μA	1.8V	+85°C	
	5.16	11.00	μA	3.3V	+00 C	∆HLVD ^(2,3)
	—	12.00	μA	1.8V	+125°C	
	_	15.00	μA	3.3V	+125 C	
DC76	4.15	9.00	μA	3.3V	+85°C	∆BOR ^(2,3)
	—	11.0	μA	3.3V	+125°C	ABOR
DC78	0.03	0.20	μA	1.8V	+85°C	
	0.03	0.20	μA	3.3V	+00 C	∆LPBOR ⁽²⁾
	—	0.40	μA	1.8V	+125°C	
	—	0.40	μA	3.3V	T120 U	

TABLE 26-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.


2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: This current applies to Sleep only.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension Lir	nits	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-620-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.