
Microchip Technology - PIC24F08KL200-I/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl200-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

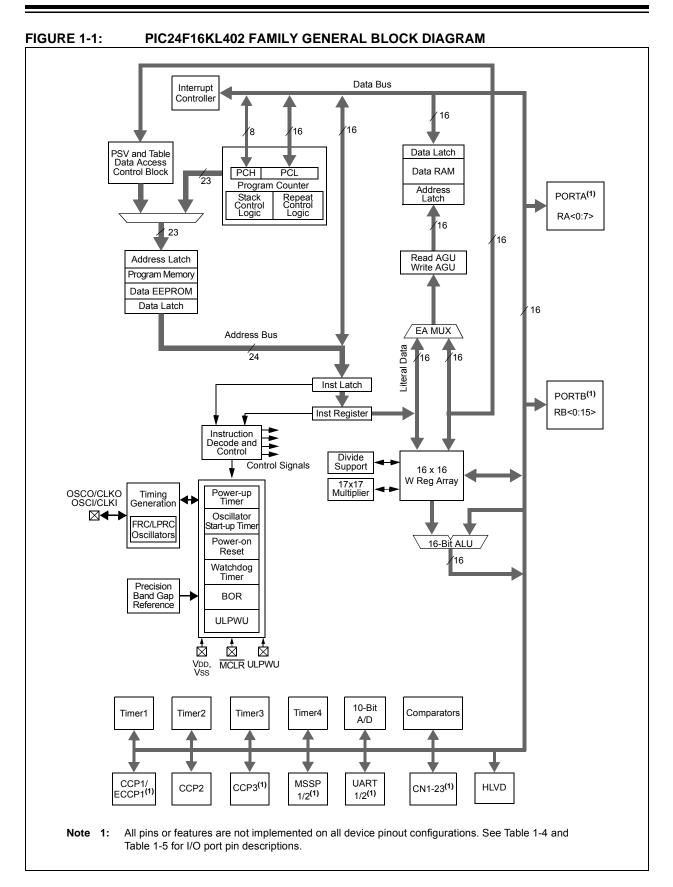
- Communications: The PIC24F16KL402 family incorporates multiple serial communication peripherals to handle a range of application requirements. The MSSP module implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24F16KL402 family include a 10-bit A/D Converter module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds.

The comparator modules are configurable for a wide range of operations and can be used as either a single or double comparator module.

1.3 Details on Individual Family Members

Devices in the PIC24F16KL402 family are available in 14-pin, 20-pin and 28-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The PIC24F16KL402 family may be thought of as four different device groups, each offering a slightly different set of features. These differ from each other in multiple ways:


- · The size of the Flash program memory
- The presence and size of data EEPROM
- The presence of an A/D Converter and the number of external analog channels available
- · The number of analog comparators
- The number of general purpose timers
- The number and type of CCP modules (i.e., CCP vs. ECCP)
- The number of serial communications modules (both MSSPs and UARTs)

The general differences between the different sub-families are shown in Table 1-1. The feature sets for specific devices are summarized in Table 1-2 and Table 1-3.

A list of the individual pin features available on the PIC24F16KL402 family devices, sorted by function, is provided in Table 1-4 (for PIC24FXXKL40X/30X devices) and Table 1-5 (for PIC24FXXKL20X/10X devices). Note that these tables show the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Device Group	Program Memory (bytes)	Data EEPROM (bytes)	Timers (8/16-bit)	CCP and ECCP	Serial (MSSP/ UART)	A/D (channels)	Comparators
PIC24FXXKL10X	4K	_	1/2	2/0	1/1	_	1
PIC24FXXKL20X	8K	—	1/2	2/0	1/1	7 or 12	1
PIC24FXXKL30X	8K	256	2/2	2/1	2/2	—	2
PIC24FXXKL40X	8K or 16K	512	2/2	2/1	2/2	12	2

TABLE 1-1:FEATURE COMPARISON FOR PIC24F16KL402 FAMILY GROUPS

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
SOSCI	9	6	11	8	I	ANA	Secondary Oscillator Input
SOSCO	10	7	12	9	0	ANA	Secondary Oscillator Output
SS1	12	9	26	23	0	_	SPI1 Slave Select
SS2	15	12	23	20	0	_	SPI2 Slave Select
T1CK	13	10	18	15	I	ST	Timer1 Clock
T3CK	18	15	26	23	I	ST	Timer3 Clock
T3G	6	3	6	3	I	ST	Timer3 External Gate Input
U1CTS	12	9	17	14	I	ST	UART1 Clear-to-Send Input
U1RTS	13	10	18	15	0		UART1 Request-to-Send Output
U1RX	6	3	6	3	I	ST	UART1 Receive
U1TX	11	8	16	13	0		UART1 Transmit
U2CTS	10	7	12	9	I	ST	UART2 Clear-to-Send Input
U2RTS	9	6	11	8	0		UART2 Request-to-Send Output
U2RX	5	2	5	2	I	ST	UART2 Receive
U2TX	4	1	4	1	0	_	UART2 Transmit
ULPWU	4	1	4	1	I	ANA	Ultra Low-Power Wake-up Input
Vdd	20	17	13, 28	10, 25	Р	—	Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	2	19	2	27	I	ANA	A/D Reference Voltage Input (+)
VREF-	3	20	3	28	I	ANA	A/D Reference Voltage Input (-)
Vss	19	16	8, 27	5, 24	Р	_	Ground Reference for Logic and I/O Pins

PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-4:**

TTL = TTL input buffer Legend:

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

		Pin Number	r			
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
SCK1	15	12	8	I/O	ST	MSSP1 SPI Serial Input/Output Clock
SCL1	12	9	8	I/O	l ² C	MSSP1 I ² C Clock Input/Output
SCLKI	10	7	12	I	ST	Digital Secondary Clock Input
SDA1	13	10	9	I/O	l ² C	MSSP1 I ² C Data Input/Output
SDI1	17	14	11	Ι	ST	MSSP1 SPI Serial Data Input
SDO1	16	13	9	0	_	MSSP1 SPI Serial Data Output
SOSCI	9	6	11	I	ANA	Secondary Oscillator Input
SOSCO	10	7	12	0	ANA	Secondary Oscillator Output
SS1	12	9	12	0	_	SPI1 Slave Select
T1CK	13	10	9	I	ST	Timer1 Clock
ТЗСК	18	15	12	I	ST	Timer3 Clock
T3G	6	3	11	Ι	ST	Timer3 External Gate Input
U1CTS	12	9	8	Ι	ST	UART1 Clear-to-Send Input
U1RTS	13	10	9	0	_	UART1 Request-to-Send Output
U1RX	6	3	12	I	ST	UART1 Receive
U1TX	11	8	11	0	_	UART1 Transmit
ULPWU	3	1	3	I	ANA	Ultra Low-Power Wake-up Input
VDD	20	17	14	Р		Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	2	19	2	I	ANA	A/D Reference Voltage Input (+)
VREF-	3	20	3	I	ANA	A/D Reference Voltage Input (-)
Vss	19	16	13	Р	_	Ground Reference for Logic and I/O Pins

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 4-8: MSSP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP1BUF	0200	_	—	_	_		—	—	—	Image: Second Secon						00xx		
SSP1CON1	0202	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	0204	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	0206	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	0208	_	_	_	_	_	_	_	_	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000
SSP1ADD	020A	_	_	_	_	_	—	—	_							ode)		0000
SSP1MSK	020C	_		_	_		_	_			М	SSP1 Addre	ess Mask R	egister (I ² C	Slave Mode	e)		00FF
SSP2BUF ⁽¹⁾	0210	_		_	_		_	_				MSSP2 F	Receive Buff	er/Transmit	Register			00xx
SSP2CON1(1)	0212	_		_	_		_	_		WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2(1)	0214	_	_	_	_		_	_		GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3(1)	0216	_	_	_	—	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	0218	_	_	_	_	_	_	_	_	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	021A	_	_	_	_	_	—	_	—		MSS			ster (I ² C Sla Register (I ² C		ode)		0000
SSP2MSK ⁽¹⁾	021C	_	-	_	_	_	_	_			М	SSP2 Addre	ess Mask R	egister (I ² C	Slave Mode	e)		00FF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-9: UART REGISTER MAP

IADLL 4	J .	UANT																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_		_				UART1	Transmit R	egister				xxxx
U1RXREG	0226	_	_	_	_	_		_				UART1	Receive Re	egister				0000
U1BRG	0228					Baud Rate Generator Prescaler Register								0000				
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	UART2 Transmit Register xx									xxxx						
U2RXREG	0236	_	_	_	_	_		_				UART2	Receive Re	egister				0000
U2BRG	0238							Baud Ra	ate Genera	tor Prescaler	Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Bu	uffer 0								xxxx
ADC1BUF1	0302								A/D Bu	uffer 1								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_		ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	OFFCAL	—	CSCNA		_	r		SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS	0000
AD1CON3	0324	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0			ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—		—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_	_	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12(1)	CSSL11 ⁽¹⁾	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	_	CSSL4 ⁽¹⁾	CSSL3 ⁽¹⁾	CSSL2 ⁽¹⁾	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0', r = reserved bit. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

TABLE 4-14: ANALOG SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANCFG	04DE	_	—	—	—	_	_		_	_	_			_	—		VBGEN	0000
ANSA	04E0	-	_	-	—	_	-	_	_	_	_	_	_	ANSA3	ANSA2	ANSA1	ANSA0	000F
ANSB	04E2	ANSB15	ANSB14	ANSB13	ANSB12 ⁽¹⁾	—	_	_	_	—	—	_	ANSB4	ANSB3(2)	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	F01F ⁽³⁾

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

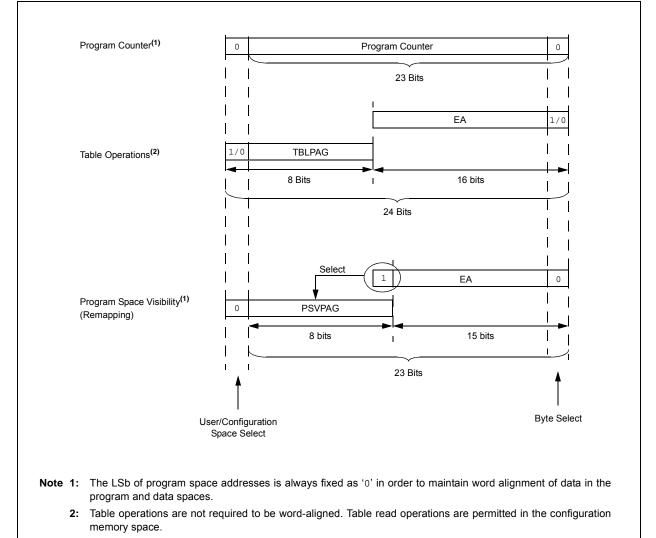
2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'

3: Reset value for 28-pin devices is shown.

TABLE 4-15: COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	_		_	_	C2EVT ⁽¹⁾	C1EVT	—	—	_		_	_	C2OUT	C1OUT	xxxx
CVRCON	0632	_	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	CLPWR	—	_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	—	_	CCH1	CCH0	xxxx
CM2CON ⁽¹⁾	0636	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: These bits and/or registers are unimplemented in PIC24FXXKL10X/20X devices; read as '0'.

A	Access		Progra	m Space A	Address	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xx xxxx x	xxx xxxx	x xxxx xxx0	
TBLRD/TBLWT	User	TBI	_PAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		د0	xxx xxxx	XXX	***	xxx
	Configuration	TBI	_PAG<7:0>		Data EA<15:0>	
		12	xxx xxxx	XXX	***	xxx
Program Space Visibility	User	0	PSVPAG<7:	_{0>} (2)	Data EA<14	:0> (1)
(Block Remap/Read)		0	XXXX XXX	xx	XXX XXXX XXX	x xxxx

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on PIC24F16KL402 family devices.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing it is not recommended.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 5.5 "Programming Operations"**.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIF	_	AD1IF	U1TXIF	U1RXIF			T3IF
bit 15							bit 8
	5444.6			-			5444.6
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IF	CCP2IF	—	—	T1IF	CCP1IF	—	INTOIF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	NVMIF: NVM	I Interrupt Flag	Status bit				
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 14	-	ted: Read as '					
bit 13	AD1IF: A/D (Conversion Cor	nplete Interrup	t Flag Status bit	t		
		request has oc					
h:1 40	-	request has no		Otatus hit			
bit 12		RT1 Transmitter		Status bit			
		request has no					
bit 11	-	RT1 Receiver In		tatus bit			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 10-9	Unimplemer	ted: Read as '	0'				
bit 8	T3IF: Timer3	Interrupt Flag	Status bit				
	•	request has oc					
		request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6		-		ot Flag Status b	it		
	•	request has oc					
	0 = Interrupt	request has no	t occurred				
bit 5-4	Unimplemer	ted: Read as '	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	•	request has oc request has no					
bit 2	-	-		ot Flag Status b	it (ECCP1 on F	PIC24FXXKL40)X devices)
	1 = Interrupt	request has oc	curred	0	Υ.		,
L:1 4	-	request has no					
bit 1	-	ted: Read as '					
bit 0		rnal Interrupt 0 request has oc	-				

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—			_	BCL2IP2 ⁽¹⁾	BCL2IP1 ⁽¹⁾	BCL2IP0 ⁽¹⁾
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SSP2IP2 ⁽¹⁾	SSP2IP1 ⁽¹⁾	SSP2IP0 ⁽¹⁾	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-11	•	ted: Read as '					
bit 10-8				Interrupt Priori	ty bits ⁽¹⁾		
	111 = Interru	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interru						
	•	pt source is dis					
bit 7	•	ted: Read as '					
bit 6-4				rupt Priority bits	_S (1)		
	111 = Interru	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	•					
		ot source is dis					
bit 3-0	Unimplemen	ted: Read as 'o)'				

REGISTER 8-26: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	U2ERIP2 ⁽¹⁾	U2ERIP1 ⁽¹⁾	U2ERIP0 ⁽¹⁾
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U1ERIP2 ⁽¹⁾	U1ERIP1 ⁽¹⁾	U1ERIP0 ⁽¹⁾			—	—
bit 7							bit 0

Legend:							
R = Readat	ole bit	W = Writable bit	ble bit U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-11	-	nented: Read as '0'					
bit 10-8	U2ERIP<2	2:0>: UART2 Error Interrupt	t Priority bits ⁽¹⁾				
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)				
	•						
	•						
	•						
		errupt is Priority 1					
		errupt source is disabled					
bit 7	-	nented: Read as '0'					
bit 6-4	U1ERIP<	2:0>: UART1 Error Interrupt	t Priority bits ⁽¹⁾				
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)				
	•						
	•						
	•						
		errupt is Priority 1					
		errupt source is disabled					
bit 3-0	Unimplen	nented: Read as '0'					

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—		<u> </u>		—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown
bit 15-6	Unimplement	ted: Read as '	0'				
bit 5-4	-			it 0 for CCPx Mo	odule bits		
		Compare mode					
		-					
	Unused.						
	Unused. <u>PWM mode:</u>						
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0>	ant bits (DCxB< :: CCPx Module	<9:2>) of the d	uty cycle are fou			cle. The eigh
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2>) of the d	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spep pare mode: Ge	<9:2 ^{>}) of the d e Mode Select ecial Event Trig	uty cycle are fou	und in CCPRxL	 tch (CCPxIF bi	t is set)
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on co bin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1001 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the die e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c oin high; on con n low; on compar dge ge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

REGISTER 17-10: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			SDO2DIS ⁽¹⁾	SCK2DIS ⁽¹⁾	SDO1DIS	SCK1DIS
pit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>	—		<u> </u>	_	—
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			iown
bit 15-12	Unimplemen	ted: Read as '0)'				
oit 11		SSP2 SDO2 Pii					
		output data (SD	· ·	•			
		output data (SD	,	2 is output to th	e pin		
oit 10		SSP2 SCK2 Pir					
		clock (SCK2) of clock (SCK2) of			נ		
oit 9		SSP1 SDO1 Pi					
		output data (SD		1 to the pin is d	isabled		
		output data (SD	,				
oit 8	SCK1DIS: MS	SSP1 SCK1 Pir	n Disable bit				
		clock (SCK1) of			Ł		
	0 = The SPI	clock (SCK1) of	MSSP1 is ou	tput to the pin			
oit 7-0	Unimplemen	ted: Read as '0)'				

Note 1: These bits are implemented only on PIC24FXXKL40X/30X devices.

24.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

24.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.4 MPLINK Object Linker/ MPLIB Object Librarian

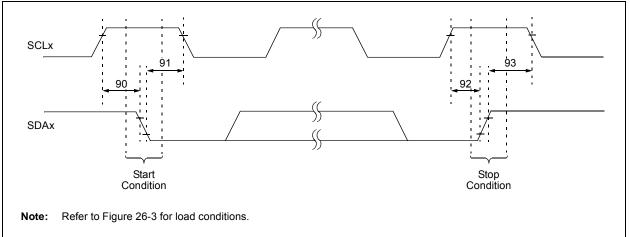
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.5 MPLAB Assembler, Linker and Librarian for Various Device Families


MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP	wa, wa	No Operation	1	1	None
1101	NOP		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
1.01	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wdo	Pop from Top-of-Stack (TOS) to Wdb	1	2	None
	POP.S	WILU	Pop Shadow Registers	1	1	All
סוופע		f	Push f to Top-of-Stack (TOS)	1	1	None
PUSH	PUSH		, ,			
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

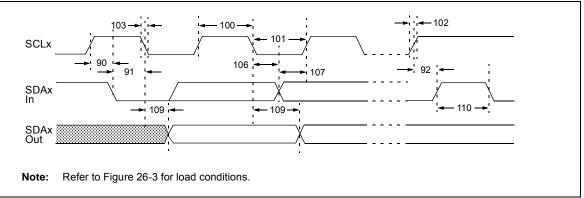
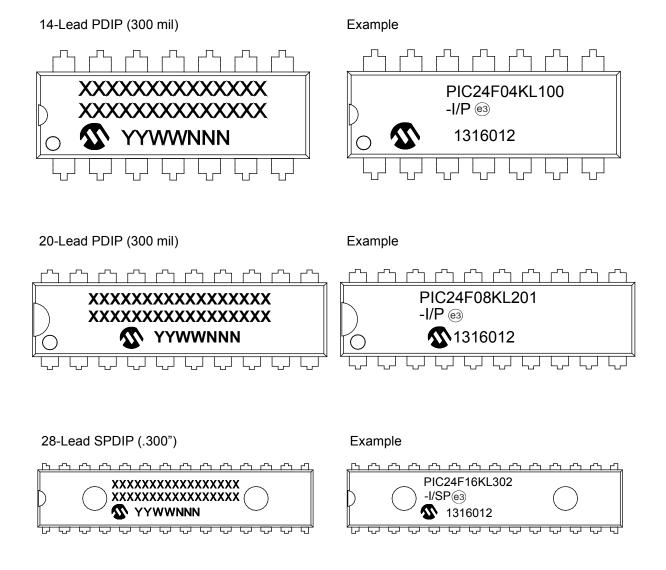


TABLE 26-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	Tsu:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		

FIGURE 26-14: MSSPx I²C[™] BUS DATA TIMING

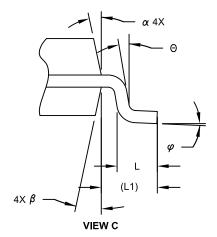

TABLE 26-34: I²C[™] BUS DATA REQUIREMENTS (MASTER MODE)

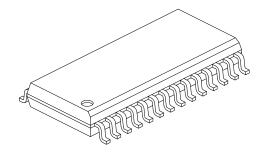
Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—		
			400 kHz mode	2(Tosc)(BRG + 1)	—		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)			
			400 kHz mode	2(Tosc)(BRG + 1)	—	_	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	_	Only relevant for Repeated
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	—	Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—		After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	—	clock pulse is generated
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input	100 kHz mode	250		ns	(Note 1)
		Setup Time	400 kHz mode	100	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	—	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	_	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
D102	Св	Bus Capacitive L	oading		400	pF	

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter 102 + Parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

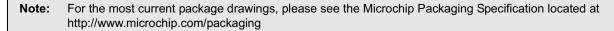


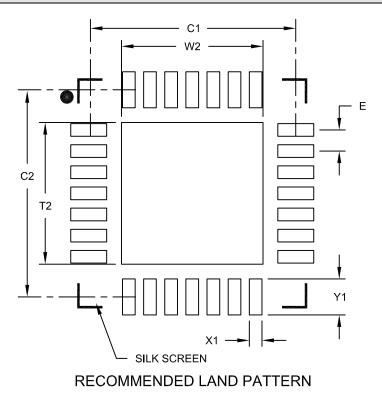

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	will be	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.

© 2011-2013 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1		7.50 BSC		
Overall Length	D		17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5° - 15°			
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5 mm Body [QFN] Land Pattern With 0.55 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			0.85

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2140A